

Auckland Air Quality Report

Monthly update - January

Introduction

Auckland Council's Research and Evaluation Unit (RIMU) collects air quality data to ensure compliance with national standards and inform policy development and evaluation. The data we collect provides a better understanding of ambient air quality in the region, including spatial and temporal variations.

This monthly update is prepared using validated data that is available about one month after raw data collection. This report covers data up to 31 December 2023. This regular update on air quality aims to promote awareness and encourage actions to improve air quality in the region.

This update is divided into four sections, with sections A and B featuring tables and graphics that illustrate air quality status in Tāmaki Makaurau / Auckland, and is based on data collected from continuous monitoring sites across the region.

For this edition, section C focuses on one monitoring site – Penrose. Section D provides monthly averages for 2023 and the past two to five years of pollutant concentrations (when data is available).

Summary

- No breach of national air quality standards occurred in December 2023.
- The Khyber Pass Road and Customs Street sites recorded the highest levels of NO₂ and SO₂ concentrations respectively in December 2023.
- As in previous years, from January to December, city centre sites recorded the highest levels of particulate matter, likely due to traffic and construction activities.

It is important to note that air quality at a monitoring site can vary from year to year due to weather and other influences (See <u>Auckland air quality report</u>, <u>October 2021</u>). For a brief analysis of short-term concentration changes of key pollutants, please see Table 2.

Where to view our data

Data can be viewed on the council's <u>environmental data portal</u>, the LAWA website <u>LAWA</u> or requested from <u>environmentaldata@aucklandcouncil.govt.nz</u>

Full state and trends analyses and reports are prepared every few years (the most recent report is *Trends in Auckland's air quality 2006-2018*).

The <u>2022 Annual data report</u> is available on the Knowledge Auckland website.

See also, the frequently asked questions about the Auckland air quality monitoring programme.

Glossary of terms

Term	Meaning Meaning
Aerodynamic diameter	Used to describe the behaviour of a particle as it moves around in the air; it compares the behaviour with that of a spherical particle of unit density.
Air pollutant/contaminant	Any substance in the air that could harm humans, animals, vegetation, or other parts of the environment when present in high enough concentrations.
Air pollution	The presence of one or more air pollutants in high enough concentrations to cause harm.
Air quality	Is the degree to which air is suitable or clean enough for humans, animals, or plants to remain healthy.
Ambient air	The external air environment (does not include the air environment inside buildings or structures)
Black carbon (BC)	Is an air pollutant made up of tiny soot-like particles discharged into the atmosphere from combustion processes.
CO	Carbon monoxide, a type of air pollutant.
Exceedance	An exceedance defines a period of time during which the concentration of a pollutant is greater than the appropriate air quality criteria.
Ground-level ozone (O₃)	At ground level, ozone is considered an air pollutant that can seriously affect the human respiratory system. It is a major component of photochemical smog.
Monitoring site	A facility for measuring the concentration of one or more pollutants in the ambient air; also referred to as 'monitoring station'
NESAQ	National Environmental Standard for Air Quality.
NO_2	Nitrogen dioxide, a type of air pollutant
PM	Particulate matter is made up of a mixture of various sizes of solid and liquid particles suspended in air.
PM ₁₀	Particulate matter with an aerodynamic diameter of 10 micrometres or less; a type of air pollutant.
PM _{2.5}	Particulate matter with an aerodynamic diameter of 2.5 micrometres or less; a type of air pollutant.
SO ₂	Sulphur dioxide, a type of air pollutant
μg/m³	Microgram of pollutant (1 millionth of a gram) per cubic metre of air, referenced to temperature of 0°C (273.15 K) and absolute pressure of 101.325 kilopascals (kPa)
n/a	Not applicable

V	/hat we monitor	Why we monitor
	Particulate matter (PM) – PM ₁₀ and PM _{2.5}	Tiny particles (particulate matter) from polluting sources such as vehicles and smoke get into the air. Breathing them may cause health problems.
Air	Nitrogen dioxide (NO ₂)	Vehicles are the main source of NO ₂ in Auckland. It can irritate the lungs, increasing susceptibility to asthma and lowering resistance to respiratory infections.
	Other pollutants	Air pollutants ozone, sulphur dioxide, carbon monoxide, black carbon and volatile organic compounds (VOCs) like benzene cause adverse health effects at elevated concentrations.
Greenhouse gas emissions	Carbon dioxide (CO ₂), methane (CH ₄), nitrous oxide (N ₂ O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF ₆) and nitrogen trifluoride (NF ₃)	The climate is warming due to increased greenhouse gas (GHG) levels in the atmosphere caused by human activities. Reducing GHG emissions will limit temperature rise.

Section A - Data tables

Table 1. Summary information about Auckland air quality monitoring programme 1 January to 31 December 2023

Number of exceedances of NESAQ in 2023	1 (PM ₁₀ exceedance at Queen Street site on 27 July)						
Number of exceedances of Auckland ambient air quality targets in 2023	0						
Maximum PM ₁₀ 24-hours mean (January to December 2023)	53.5 μg/m³ (107.0% of NESAQ)	Recorded at Queen Street on 27 July 2023					
Maximum PM _{2.5} 24-hour mean (January to December 2023)	18.0 μg/m³ (72.0% of Auckland target)	Recorded at Penrose on 29 July 2023					
Maximum NO₂ 1-hour mean (January to December 2023)	200.4 μg/m ³ (100.2% of NESAQ)	Recorded at Queen Street on 10 August 2023					
Maximum SO ₂ 1-hour mean (January to December 2023)	24.0 μg/m³ (6.8% of NESAQ)	Recorded at Customs Street on 27 April 2023					
Maximum O₃ 1-hour mean (January to December 2023)	74.0 μg/m ³ (49.3% of NESAQ)	Recorded at Patumahoe on 26 July 2023					
Maximum CO running 8-hour mean (January to December 2023)	1.1 mg/m ³ (11.0% of NESAQ)	Recorded at Khyber Pass Rd on 17 May 2023					
Number of continuous monitoring sites	10						
Location of monitoring sites	Queen Street, Customs Street, Khyber Pass Road, Penrose, Henderson, Takapuna, Glen Eden, Pakuranga, Papatoetoe, and Patumahoe						

Table 2. Short-term trends in concentration of key air pollutants monitored for the past 3, 4, and 5 years.

↑ indicates an upward

◆ indicates a downward

upward but not significant

downward but not significant

	PM ₁₀		PM _{2.5}		NO ₂		Black carbon		Ozone		со		SO ₂									
	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	Past 3	Past 4	Past 5	
Site	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	years	Site
Customs Street*	n/a	n/a	n/a	^	2	n/a	Ψ	Ψ	n/a	^	71	n/a	n/a	n/a	n/a	n/a	n/a	n/a	^	^	n/a	Customs Street*
Glen Eden*	^	3	3	Ψ	Ψ	Ψ	3	71	^	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Glen Eden*
Henderson	71	71	2	n/a	n/a	n/a	71	71	71	2	3	Ψ	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Henderson
Khyber Pass Road	^	^	^	n/a	n/a	n/a	Ψ	Ψ	Ψ	n/a	n/a	n/a	n/a	n/a	n/a	3	Ψ	Ψ	n/a	n/a	n/a	Road
Pakuranga*	^	1	71	2	71	3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Pakuranga*
Papatoetoe	Ψ	71	2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Papatoetoe
Patumahoe	<u> </u>	Ψ	Ψ	^	^	71	71	^	^	n/a	n/a	n/a	^	2	Ψ	n/a	n/a	n/a	n/a	n/a	n/a	Patumahoe
Penrose	^	71	2	Ψ	Ψ	Ψ	2	3	Ψ	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	^	1	1	Penrose
Queen Street*	^	^	^	^	1	^	7	Ψ	•	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Queen Street*
Takapuna*	^	1	71	^	1	71	71	71	2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Takapuna*
		PM ₁₀			PM _{2.5}			NO ₂		I	Black carb	on		Ozone			со			SO ₂		

Notes

Trend significance was determined using the Theil-Sen method (deseasonalised): ↑ and ↓ arrows indicate trends are statistically significant at the 0.05 level, 95% confidence intervals. n/a means not applicable.

Effective dates: 3 years (1 January 2021 to 31 December 2023), 4 years (1 January 2020 to 31 December 2023), and 5 years (1 January 2019 to 31 December 2023)

PM₁₀ is monitored at Glen Eden, Henderson, Khyber Pass Rd, Pakuranga, Papatoetoe, Patumahoe, Penrose, Takapuna, and Queen St.

PM_{2.5} is monitored at Customs St, Glen Eden, Pakuranga, Patumahoe, Penrose, Takapuna, and Queen St.

NO₂ is monitored at Customs St, Glen Eden, Henderson, Khyber Pass Rd, Patumahoe, Penrose, Takapuna, and Queen St.

Black carbon is monitored at Customs St, and Henderson.

CO is monitored at Khyber Pass Rd.

Ozone is monitored at Patumahoe.

SO₂ is monitored at Customs St, and Penrose.

*PM_{2.5} data coverage for Glen Eden, Customs Street and Pakuranga is less than 75% due to instrument failure between September 2021 and January 2022. No data for Takapuna in January and February 2023 due to the Auckland floods. Queen St data is up to 22 August due to power outage at the site.

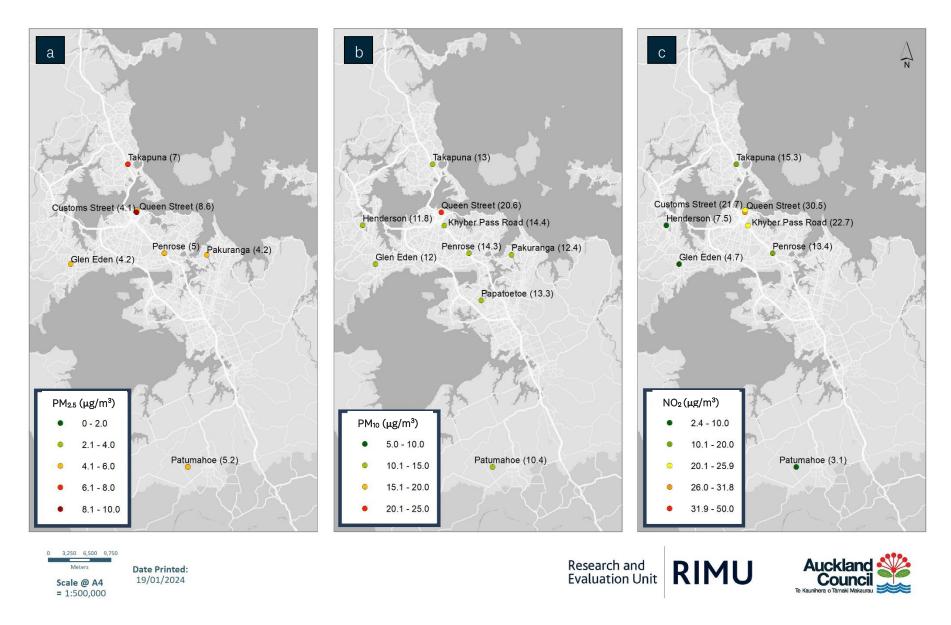


Figure 1. Maps a, b and c show the air quality monitoring sites and their last 12 months (1 January 2023 to 31 December 2023) average PM and NO₂ concentrations in brackets. Auckland city centre monitoring sites recorded the highest PM and NO₂ concentrations.

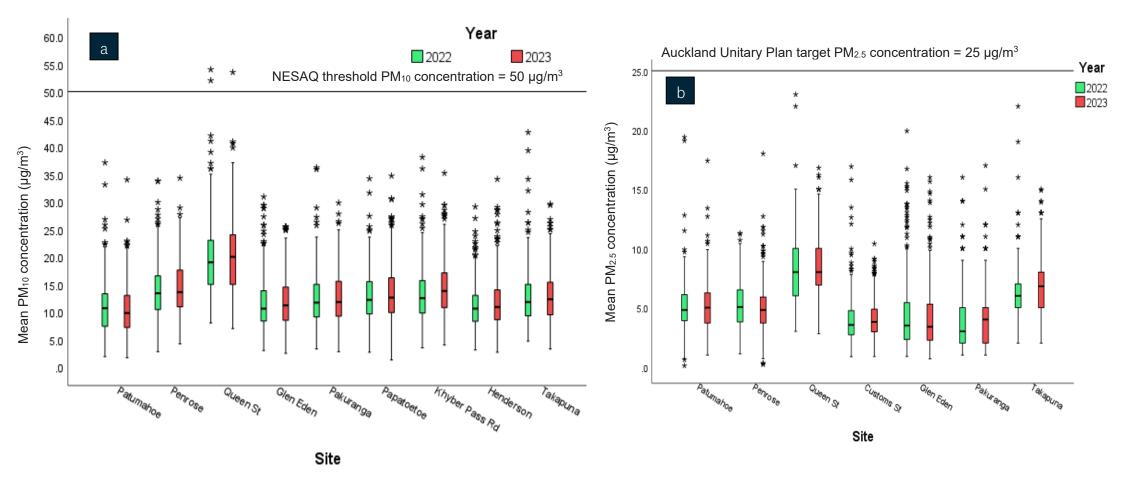
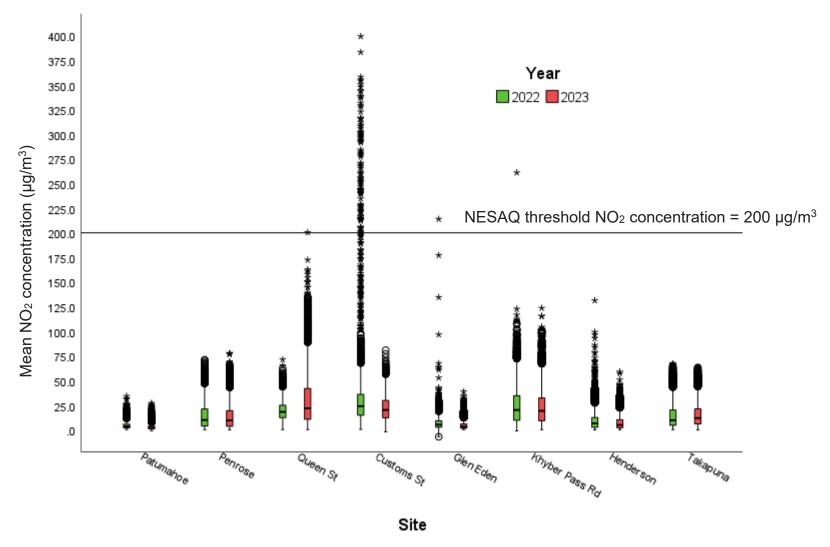



Figure 2. Boxplot of PM hourly mean concentration – 2023 compared to 2022. As in the previous year, the highest concentrations of both PM₁₀ and PM_{2.5} were recorded at Queen Street site. Plots a and b represent PM₁₀ and PM_{2.5}, respectively. PM₁₀ and PM_{2.5} have multiple sources including home heating, motor vehicles, sea salt, marine diesel, and soils (windblown soil, road dust, and dust generated by earthworks, construction, and road works). Boxes represent 25th (bottom of the box) and 75th (top of box) percentile, central line through the box is the median, bars outside the box (whiskers) represent the 1.5× interquartile range, and * are outliers.

Figure 3. Boxplot of NO₂ hourly mean concentration – 2023 compared to 2022. The highest concentrations were recorded at Queen Street monitoring sites in the city centre. Motor vehicles are the primary source of NO₂. During the first three months of 2023, Auckland Transport's data on Traffic volume at the 16 City Centre Screenline intersections indicates a 18% (from 17,482 to 20,549) increase in monthly traffic volume compared to the previous year.

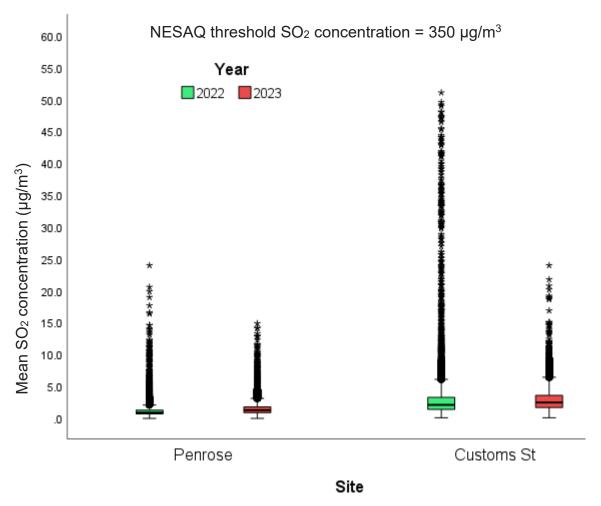
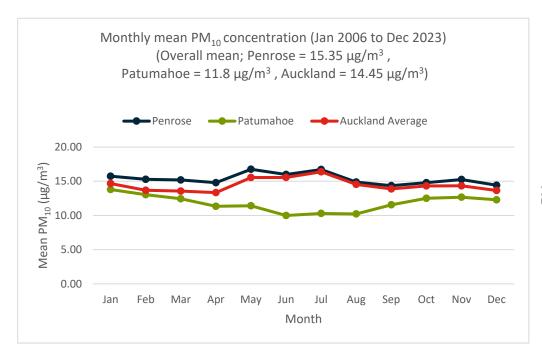
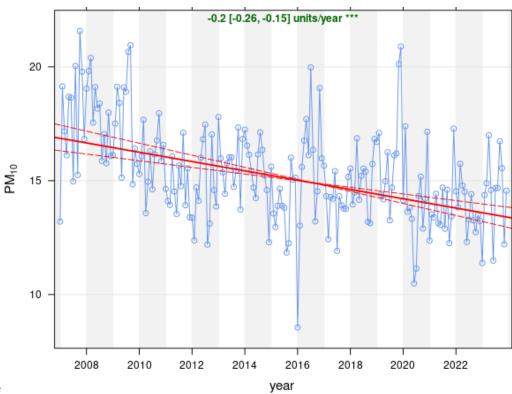
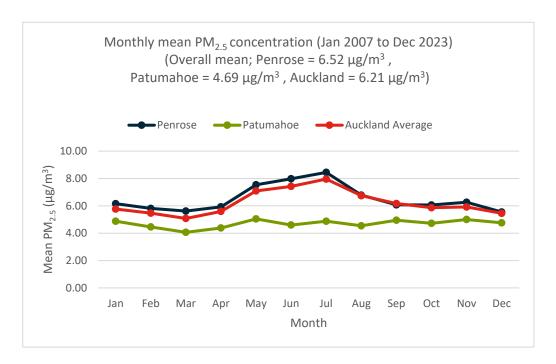


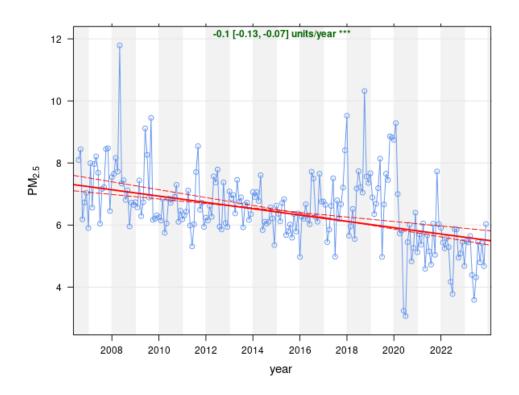
Figure 4. Boxplot of SO_2 hourly mean concentration – 2023 compared to 2022. The highest concentrations were recorded at the Customs Street monitoring site in the city centre. The mean concentration at Penrose site is higher than the previous year. SO_2 is produced from the combustion of fossil fuels that contain sulphur, such as coal and oil (used for home heating, industry, and shipping). Motor vehicles also contribute to SO_2 levels in urban air. Boxes represent 25^{th} (bottom of the box) and 75^{th} (top of box) percentile, central line through the box is the median, bars outside the box (whiskers) represent the $1.5 \times$ interquartile range, and * are outliers.

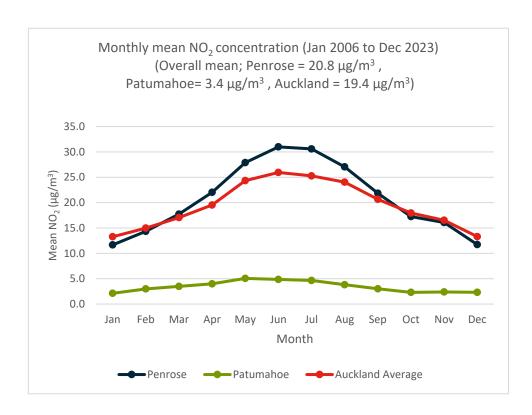

Section C. Focus on a monitoring site: Penrose

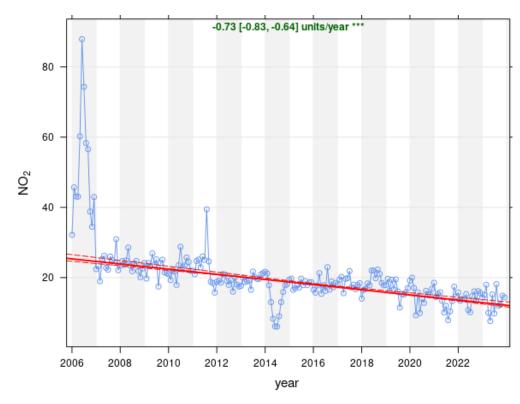

Figure 5. The Penrose air quality monitoring site is located at 19 Gavin Street. Image 'a' shows the air quality monitoring shed. Image b is an aerial view of the monitoring site and surroundings taken in July 2023 (Source: Google Maps). Air quality monitoring at this site commenced in November 2000. PM₁₀, PM_{2.5}, NO₂, SO₂, and ambient meteorological parameters are monitored at this site. The main sources of air contaminants are motor vehicles, home heating (during winter) and industrial activities.

Key findings:


- Overall, Penrose site average PM2.5 concentration is 5.0 % higher than Auckland's average and 39.0 % higher than Patumahoe (a rural site). The average PM10 concentration is 5.5 % higher than Auckland's average and 30.1 % more than Patumahoe site.
- In general, Penrose average NO₂ concentration is 7.0 % higher than Auckland's average and six times more than Patumahoe site.
- ullet This monitoring site is located at the 'urban peak' for air pollutant exposure, so it is expected that the average PM₁₀ and NO₂ concentrations will be higher than Auckland's average.
- The deseasonalised long-term trend analysis results at the Penrose site show there is a downward trend in PM₁₀, PM_{2.5}, NO₂, and SO₂ concentrations. However, there is a short-term upward trend in SO₂ average concentrations (January 2019 to December 2023)


Figure 6. Temporal variation in monthly PM_{10} concentrations – Penrose site compared to Patumahoe (rural site) and Auckland average. Overall, Penrose site average PM_{10} concentration is 5.5 % higher than Auckland's average and 30.1 % more than Patumahoe site.


Figure 7. Trends in PM₁₀ at Penrose site – January 2006 to December 2023. The plot shows the deseasonalised monthly mean concentrations of PM₁₀. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as – 0.2 (μ g/m³) per year and the 95% confidence intervals in the slope from -0.26 - (-0.15) μ g/m³/year. The '***' show that the trend is significant to the 0.001 level.


Figure 8. Temporal variation in monthly PM_{2.5} concentrations – Penrose site compared to Patumahoe (rural site) and Auckland average. Overall, Penrose site average PM_{2.5} concentration is 5.0% higher than Auckland's average, but 39.0% more than Patumahoe site.

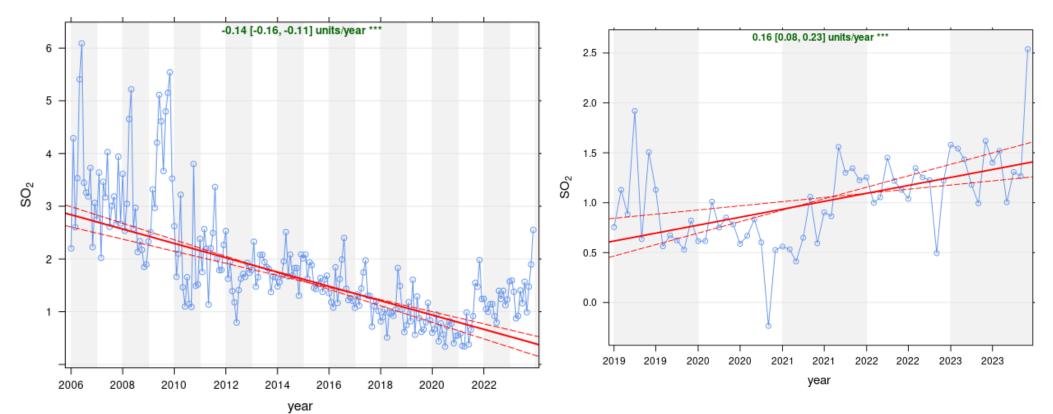

Figure 9. Trends in PM_{2.5} at Penrose site – January 2007 to December 2023. The plot shows the deseasonalised monthly mean concentrations of PM_{2.5}. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as – 0.1 (μ g/m³) per year and the 95% confidence intervals in the slope from -0.13 - (-0.07) μ g/m³/year. The '***' show that the trend is significant to the 0.001 level.

Figure 10. Temporal variation in monthly NO₂ concentrations – Penrose site compared to Patumahoe (rural site) and Auckland average. Overall, Takapuna site average NO₂ concentration is 7.0% higher than Auckland's average, but six times higher than Patumahoe site.

Figure 11. Trends in NO₂ at Penrose site – January 2006 to December 2023. The plot shows the deseasonalised monthly mean concentrations of NO₂. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as -0.73 (μ g/m³) per year and the 95% confidence intervals in the slope from -0.83 - (-0.64) μ g/m³/year. The '***' show that the trend is significant to the 0.001 level.

Figure 12. Log-term trends in SO_2 at Penrose site – January 2006 to December 2023. The plot shows the deseasonalised monthly mean concentrations of SO_2 . The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as -0.14 (μ g/m³) per year and the 95% confidence intervals in the slope from -0.16 - (-0.11) μ g/m³/year. The '***' show that the trend is significant to the 0.001 level.

Figure 13. Short-term trends in SO_2 at Penrose site – January 2019 to December 2023. The plot shows the deseasonalised monthly mean concentrations of SO_2 . The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as 0.16 (μ g/m³) per year and the 95% confidence intervals in the slope from 0.08 - 0.23 μ g/m³/year. The '***' show that the trend is significant to the 0.001 level.

Section D. Table 3. Monthly averages: 2023 and past two to five years (when data is available)

Pollutant	Site	Period	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		2023	8.9	10.9	10.0	13.0	14.5	11.1	14.9	13.9	12.7	13.4	9.6	10.5
	Glen Eden	Past 5 years	11.6	11.1	9.6	11.1	12.9	15.4	15.6	13.8	11.5	10.2	11.9	12.9
		2023	10.1	12.2	10.6	12.5	13.8	10.4	13.5	11.4	13.1	13.2	10.0	10.6
	Henderson	Past 5 years	12.0	11.5	11.0	11.7	12.5	12.9	13.1	12.1	11.1	10.5	12.5	12.8
	Khyber	2023	12.2	14.6	14.0	16.0	16.6	11.8	16.0	14.3	16.2	15.5	12.2	13.0
	Pass Road	Past 4 years	11.8	11.4	10.8	11.4	10.9	11.1	11.9	11.3	11.2	11.0	12.9	13.8
	Dakuranga	2023	9.6	11.1	11.4	13.0	14.9	12.1	15.7	13.7	13.6	12.8	10.0	11.0
	Pakuranga	Past 5 years	12.1	11.5	10.0	10.7	12.4	13.3	14.2	13.0	11.4	10.9	12.6	12.7
PM_{10}	Papatoetoe	2023	9.8	12.0	12.8	12.6	14.1	10.9	16.4	14.5	15.6	15.3	12.4	12.7
$(\mu g/m^3)$	rapatoetoe	Past 5 years	14.2	13.6	12.4	13.1	14.0	14.0	15.6	14.3	13.5	13.0	14.5	14.7
	Patumahoe	2023	8.9	10.7	12.0	11.0	9.7	7.1	12.3	9.8	11.8	11.5	9.9	10.4
	- atamanoc	Past 5 years	14.9	14.3	12.5	12.2	11.8	9.9	10.5	10.8	11.4	11.1	13.3	14.9
	Penrose	2023	12.4	14.2	14.6	16.5	16.0	12.2	16.0	14.2	15.8	14.9	11.7	13.4
		Past 5 years	15.6	14.9	14.1	14.3	15.5	14.2	14.9	13.9	13.5	12.9	15.0	15.9
	Queen	2023	16.8	19.5	19.2	21.7	22.7	16.8	26.3	21.6	ND	ND	ND	ND
	Street	Past 5 years	17.5	16.7	16.0	16.5	16.9	16.7	18.4	18.2	17.8	17.9	19.1	19.4
	Takapuna	2023	11.5 13.1	ND 12.3	12.6 11.0	15.0 12.4	15.9 12.8	10.9 13.3	14.0 14.1	12.4 12.9	16.1 11.7	13.0 11.3	10.4	10.8 13.4
	Customs	Past 5 years 2023	3.7	3.8	3.1	4.5	5.2	3.7	4.6	4.4	5.1	4.3	3.0	3.4
	Street	Past 3 years	4.4	3.7	3.3	3.9	4.0	4.7	4.8	5.6	5.5	3.8	3.8	3.4
		2023	2.1	2.7	2.2	3.3	6.2	5.6	6.8	7.8	4.4	3.6	2.4	2.8
	Glen Eden	Past 4 years	2.7	2.5	2.0	3.1	5.7	9.8	9.7	7.7	5.0	3.2	3.5	3.2
		2023	2.9	3.2	3.1	4.0	6.0	5.8	6.4	6.3	4.1	3.5	2.5	3.1
	Pakuranga	Past 4 years	3.0	2.9	2.5	3.5	5.3	6.3	9.3	5.7	4.4	3.2	3.9	3.5
$PM_{2.5}$	8.1	2023	4.9	6.4	4.8	5.2	4.8	4.0	6.0	5.5	5.5	5.8	4.5	5.2
$(\mu g/m^3)$	Patumahoe	Past 5 years	5.4	4.5	4.3	5.0	5.4	5.1	4.7	4.8	4.7	4.4	5.2	5.3
(1 0, ,	Penrose	2023	4.2	4.7	4.6	5.1	5.1	5.2	6.7	5.7	4.1	4.9	4.3	5.1
		Past 5 years	6.8	5.3	5.0	5.6	6.5	7.3	7.3	6.3	5.8	5.8	6.5	5.9
	Queen Street Takapuna	2023	7.2	8.0	7.5	9.0	9.8	7.4	10.6	9.1	ND	ND	ND	ND
		Past 5 years	7.1	6.5	6.0	6.7	7.2	7.4	8.0	7.7	7.3	7.3	7.7	7.9
		2023	ND	ND	5.3	7.1	8.3	6.7	8.1	8.3	7.7	7.0	5.5	6.0
		Past 5 years	5.9	5.4	4.9	5.7	6.8	8.2	8.8	7.7	6.6	6.1	6.7	6.3
	Customs	2023	18.7	17.8	20.1	21.3	23.8	28.5	21.8	30.6	22.2	19.8	19.9	16.1
	Street	Past 3 years	34.8	36.9	39.1	30.8	37.1	52.4	37.4	35.6	30.8	29.1	24.1	23.9
	Glen Eden	2023	6.0	5.0	4.0	4.1	5.8	6.6	4.6	6.8	4.0	3.4	3.1	2.8
		Past 5 years	2.0	3.0	4.0	4.6	7.4	8.2	7.9	6.1	4.7	4.6	3.8	2.9
	Henderson	2023	4.5	5.1	7.0	7.6	9.8	13.2	6.6	10.3	8.1	5.7	7.2	4.4
		Past 5 years	3.9	7.3	8.4	8.7	12.0	12.8	11.7	9.2	7.5	6.5	6.1	4.7
NO_2	Khyber Pass Road	2023	11.4 21.5	18.7	26.0	11.2 23.8	23.5	31.1	27.7 35.1	37.4 30.8	22.5	19.6	21.3 30.0	15.1
$(\mu g/m^3)$	Pass Noau	Past 4 years 2023	21.5	19.5 2.5	22.4 3.2	4.6	32.8 4.8	33.8 4.6	3.0	4.3	30.2	24.9 1.8	2.4	20.1
(46/111/	Patumahoe	Past 5 years	1.4	2.0	2.9	2.8	3.8	4.0	4.3	3.4	2.5	2.4	2.4	2.1
		2023	6.3	9.2	15.4	11.7	14.1	23.5	17.9	23.3	12.5	9.7	11.2	6.6
	Penrose	Past 5 years	9.0	10.8	13.4	16.9	22.3	22.8	22.8	18.7	16.6	12.6	12.9	8.5
	Queen	2023	10.8	10.0	30.1	29.7	34.3	35.6	43.7	49.8	ND	ND	ND	ND
	Street	Past 5 years	28.2	28.8	30.8	31.0	37.4	39.5	43.2	42.1	37.7	36.4	32.2	28.0
	Takapuna	2023	5.3	ND	19.0	12.6		22.3	19.0	25.0	13.4	11.7	15.1	8.7
	ranapulla	Past 5 years	6.5	8.4	10.7	14.6	20.2	21.1	22.1	18.5	15.2	12.7	11.8	7.9
	Customs	2023	2.3	2.4	2.5	3.2	2.5	2.9	2.3	3.2	3.3	2.2	3.2	3.1
SO_2	Street	Past 3 years	1.6	1.6	2.3	1.5	1.7	4.4	2.6	2.8	2.2	2.2	1.6	1.5
$(\mu g/m^3)$	Penroso	2023	1.2	1.6	1.7	0.9	1.7	1.8	1.5	1.5	0.9	1.2	1.8	2.2
	Penrose	Past 5 years	0.5	0.8	1.1	0.8	1.2	1.2	1.0	0.8	1.0	0.8	1.0	0.5
O ₃ (μg/m³) P		2023	26.1	25.8	26.3	40.1	26.3	42.3	52.6	45.6	51.7	45.9	ND	30.0
	Patumahoe	Past 5 years	26.6	29.3	33.4	38.9	41.2	43.1	46.8	52.6	51.4	46.9	41.0	31.4
	Khyber	2023	0.105	0.159	0.220	0.160	0.053	0.143	0.162	0.209	0.037	0.010	0.007	0.004
(mg/m³)	Pass Road	Past 4 years	0.206	0.139	0.192	0.100	0.268	0.143	0.102	0.220	0.204	0.010	0.183	0.004
	Customs	2023	1095	1286	1735	1429	1735	1767	1245	1953	1309	1180	1435	1211
Black	Street	Past 3 years	1447	1535	1316	1094	1356	3363	1350	1326	1034	1016	1127	1047
carbon (ng/m³)		2023	247	316	510	455	510	824	473	725	382	221	257	190
(118/111)	Henderson	Past 5 years	265	458	566	540	995	1204	1113	879	542	412	381	301
	ND = No.4	data measured d	lue to Auck	land floor	. Oueen St	August 6	lata is un	 to 22 Διισ	ust (due	to nower	Outage 3	t the site)		
	110 - 110 (cusurcu u		11000	., ५,५८८।। ३६		is up	Aug		-5 204601	Juluge a			

© 2024 Auckland Council, New Zealand
ISSN 2816-0975
Image credit: Page 1 banner photograph by Gino Demeer.
Disclaimer
Auckland Council disclaims any liability whatsoever in connection with any action taken in reliance of this document for any error, deficiency, flaw or omission contained in it.

Find out more:

Find out more:

EnvironmentAuckland.org.nz

Research and Evaluation Unit

RIMU