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Executive Summary 
Assessment of water quality state and trends are requirements of Section 35 of the Resource 
Management Act (RMA: NZ Government 1991) and the National Policy Statement for 
Freshwater Management 2020 (NPS-FM). The NPS-FM defines certain compulsory water 
quality variables to be attributes of the values of ecosystem health and human contact, the 
details of which are set out in the National Objectives Framework (NOF). NOF numeric attribute 
states are evaluated from water quality observations obtained by water quality monitoring and 
are generally percentiles of water observations (e.g., 50th percentile (median), 95th percentile). 
For each attribute, the NPS-FM also defines categorical attribute states, which are derived by 
assigning numeric attribute states in four (or five) “NOF bands”, which are designated A to D 
(or E). 

The NPS-FM requires that the baseline attribute states are established as an initial step in the 
planning process and that attributes are used as a basis for setting target attributes states. The 
NPS-FM also requires that the condition of water bodies (the current attribute state) is 
systematically monitored and reported, and that action is taken where monitoring indicates 
deteriorating trends.  

Flow influences water quality in rivers and streams across a range of timescales and therefore 
has an impact on attribute state and trends. Therefore, flow is often monitored at water quality 
monitoring sites and flow data is important supplementary information in the analysis of water 
quality state and trends. It is important for Auckland Council (AC) to consider how flow 
influences attribute state and trends, how to incorporate information about flow into 
assessment of state and trends and to ensure that continued monitoring of water quality and 
flow is consistent with the requirements of the NPS-FM. It is also important for AC to consider 
whether assessment of state and trends is consistent with the requirements of the NPS-FM 
and to be clear about the uncertainties associated with these assessments. AC therefore 
commissioned this study to provide guidance with respect to how to account for the influence 
of flow in both the sampling and analysis of water quality data and the implications of this 
specifically in relation to the requirements of the NPS-FM.   

This study undertook a series of analyses of water quality and flow data associated with 15 
sites and 10 water quality variables (of which five are NOF attributes) in the Auckland region. 
These analyses and the salient results are as follows: 

1. Attribute state is estimated from water quality observations pertaining to an 
“assessment period”. AC samples water quality monthly, and in this study, the 
assessment period was five years, which are consistent with current practice. We 
assessed the current attribute state from the observations and estimated the precision 
of these assessments. Limited precision means the assessed state is not exact and 
arises because the observations represent a finite sample of the population (i.e., a 
subset of all possible water quality observations). The 95% confidence interval for the 
assessed state of some NOF attributes often extended over two, three or even four 
NOF bands.  

2. We refer to instantaneous flow as the flow in a river or stream at the time the water 
quality was sampled. In this study the instantaneous flow was quantified by the mean 
daily flow observed at a nearby river flow gauging station. The flow regime refers to the 
characteristics of flows at longer than instantaneous timescales, including weeks, 
months and years. Flow regimes can be characterised by many statistics such as mean 
and median flows, variability, and seasonality. Variation in these types of statistics at 
timescales of weeks, months and years are all measures of flow regime variability. A 
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drought year, for instance, will feature more frequent low flows than the long-term flow 
regime. This study showed that there is marked flow regime variation associated with 
different five-year assessment periods. Because flow influences water quality in rivers 
and streams, flow regime variation can cause differences in attribute states between 
assessment periods. This leads to uncertainty in state assessments that is additional 
to imprecision, and which is unquantified. We refer to this uncertainty as type A. 
Unquantified uncertainty of type A means there will be differences in assessments 
between assessment periods (such as between baseline state and current state) that 
is driven by flow regime variability that would occur even if there were no changes in 
the anthropogenic pressure in a catchment.  

3. Water quality measures in rivers and streams are influenced by the instantaneous flow 
rate (i.e., discharge at the time the sample was taken). The strength of the relationship 
between observations and instantaneous flow differs across variables and sites and is 
associated with differences in the underlying mechanisms of mobilisation (“wash-off”) 
and dilution of the contaminants. Water quality observations need to be unbiased with 
respect to instantaneous flow if they are to represent the true attribute state. We found 
that the distribution of flows associated with AC’s water quality observations were not 
significantly different to the full flow distribution and can therefore be regarded as 
unbiased with respect to flow.  

4. The relationships between water quality observations and instantaneous flow are 
commonly represented by bivariate (i.e., observation - flow) statistical models. These 
models are used in trend assessment in a statistical treatment known as flow-
adjustment. The purpose of flow-adjustment is to remove the confounding effect of flow 
so that the pattern of interest (the relationship between the observed water quality 
observations and time (i.e., the trend) can be more confidently inferred. This study 
showed that the definition of models describing observations - instantaneous flow is 
subjective and therefore there are unquantified uncertainties that arise due to 
procedural choices around flow adjustment that are likely to be made by individual 
analysts.  

5. Trend analyses for all site variable combinations were used to demonstrate that 
procedural choices made in association with flow-adjustment have an appreciable 
influence on the assessment. These differences represent an unquantified uncertainty 
that is associated with trend assessment that we refer as unquantified uncertainty of 
type B.  

6. We undertook rolling trend analyses with assessment periods of differing duration (5, 
10 and 20-years) and the starting year incrementing by one year. These analyses 
indicate that site trend direction tends to oscillate (i.e., trend directions can reverse from 
increasing to decreasing over short time periods). The length of the reversal time 
decreases with decreasing trend period duration. This indicates that short-term trends 
(e.g., 5 and 10-year duration) are likely to be strongly influenced by flow regime 
variation. This was true even when trends were flow-adjusted. We showed that these 
reversals are associated with flow regime variability by employing a model that 
combines the entire flow record with the water quality observation know as Weighted 
Regression on Time, Discharge, and Season (WRTDS). This result indicates that water 
quality trends are at least partly associated with flow regime variation. The oscillations 
in the trends are evidence that the flow regime variation, and associated water quality 
variation, is partly attributable to quasi-periodic climate variation such as the El Niño-
Southern Oscillation (ENSO). It is important to emphasise that this study has shown a 
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link between water quality state and flow regime variation but did not directly investigate 
climate variation. However, there is direct evidence of the link between ENSO and 
water quality variation in New Zealand at interannual timescales. Therefore, when this 
report refers to the impact of “flow regime variability” on water quality, it is appropriate 
to consider that climatic variation is at least partly involved. 

The important conclusions and some of our recommendations from these findings are as 
follows: 

1. Water quality in rivers and streams is linked to flow, including the instantaneous flow at 
the time of sampling and the longer-term flow regime. Flow data should therefore be 
regarded as important additional information that assists the analysis and interpretation 
of attribute state and trends. Continuous flow time series can be used to characterise 
flow regime variation, which in turn, provides insights into the generation, mobilisation, 
storage and transport of contaminants in catchments. Therefore, we recommend that 
where possible, water quality monitoring should be associated with continuous flow 
measurements preferably from flow recorders or alternatively derived synthetically (i.e., 
modelled).  

2. Assessed attribute states are associated with both quantified uncertainty (imprecision) 
and unquantified uncertainty of type A. We recommend that the assessed state be 
regarded as the “best information at the time” as defined by NPS-FM Section 1.6(1) but 
that AC is transparent about both types of uncertainty and that uncertainty is given due 
consideration when using and publishing data describing attribute states. 

3. We recommend that the impact of unquantified uncertainty of type A on assessment of 
baseline and current state is considered when setting target attribute states and 
developing actions to improve water quality. This could take the form of sensitivity 
analyses that test the extent to which planned actions may fail to achieve target 
attribute states in future assessment periods due to foreseeable influence of flow 
regime variability on future attribute states. 

4. We recommend that water quality trend assessments are always represented as model 
outputs that are unavoidably uncertain. To the extent possible, AC should be 
transparent about the uncertainties associated with water quality trend assessment, 
particularly when reporting trends. Because flow-adjustment introduces additional 
unquantified uncertainty of type B and does not remove the influence of flow regime 
variation on trends, we recommend that only raw (un-adjusted) trends are reported 
under S3.30(2)(c). 

5. Because trend assessments are uncertain, we recommend a cautious and staged 
approach with respect to taking action when deteriorating trends are detected. The 
staged approach would be triggered by an observed deteriorating trend that is reported 
under NPS-FM S3.30(2)(c) requirements. Stage 1 should include more detailed 
analysis of the available data including consideration of flow-adjusted trends or 
potentially the use of more sophisticated models such as WRTDS or AC’s process-
based Freshwater Management Tool (FWMT). The appropriate action at Stage 1 may 
include taking cautious and proportionate action on the ground and/or potentially 
increased monitoring effort and ongoing surveillance of possible water quality 
pressures action. If deteriorating trends continue and/or confidence in the causes of 
these trends is judged sufficiently high, then stage 2 would be triggered that would 
involve significant intervention in the catchment to halt and reverse deterioration. 
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6. The requirement under NPS-FM S3.30(2)(d) to assess causes of deteriorating trends 
was not explicitly considered by this study. However, flow-adjustment and flow 
normalisation (a particular output of the WRTDS model), as undertaken in this study, 
can be regarded as statistical approaches to removing the influence of flow so the 
influence of other factors can be more robustly inferred. AC should strive to undertake 
robust attribution of cause(s) in seeking to carry out the requirements of NPS-FM 
S3.30(2)(d). However, this is extremely challenging for two reasons. First, suitable data 
characterising spatio-temporal variation in environmental drivers of water quality are 
scarce and fragmented. We therefore recommend gathering data describing possible 
causes of trends, such as changes in land use practices and intensity, changes in point 
source discharge loads, and adoption of actions in the catchments of monitoring sites 
and across the Region in general. The second reason NPS-FM S3.30(2)(d) presents a 
challenge is that water quality is generally influenced by multiple environmental drivers, 
including anthropogenic drivers such as land use and natural drivers such as climate 
variability and its impact on flow regimes. There may be additive, compensatory or 
synergistic interactions among these drivers, making it difficult to reliably attribute water 
quality responses to specific water quality pressures. The influences can only be 
elucidated by modelling and models are dependent on there being sufficient sites for 
the signals (i.e., causes) to rise above the noise. We therefore recommend that 
monitoring and modelling are treated as equal and mutually informative processes that 
must work together to fulfil AC’s functions and duties under the RMA and NPS-FM.  
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Glossary 
The table below defines the terms used in this report. 

Term Definition 

Assessment period A specific time period over which the available observations pertaining to a 
site and water quality variable are used to assess state or trends. In this report, 
the state assessment period is always 5-years and trends are assessed over 
periods of 5, 10 and 20 years.  

Confidence The confidence in the assessed direction of a trend, which is limited due to 
sample error. Confidence in trend direction indicates the probability that the 
assessed direction is the same as the true (i.e., population) direction.  

Flow-adjustment A statistical process that attempts to remove the influence of instantaneous 
flow on water quality observations. The purpose is to remove the confounding 
influence of instantaneous flow in trend analysis.  

Flow regime 
variability 

Variation in characteristics of flows at longer than that of instantaneous flow 
(see Instantaneous flow). Flow regimes can be characterised by many 
statistics such as mean and median flows, variability, and seasonality. 
Variation in these types of statistics at timescales of weeks, months and years 
are all measures of flow regime variability. Flow regimes vary in response to 
variation in hydrological processes including precipitation, evaporation and 
associated storage and release of water from the catchment. 

Instantaneous flow Flow at a specific point in time, such as when water quality is sampled. In this 
study the instantaneous flow was quantified by the mean daily flow observed 
at a nearby river flow gaging station. 

Precision The exactness of a quantified current or baseline state, which is limited due to 
sample error. Precision is quantifiable and indicates the range over which we 
could expect the state to vary if there had been multiple independent sets of 
samples collected over the same assessment period.  

Unquantified 
uncertainty of type 
A and type B 

Uncertainty associated with state and trend assessments that is not quantified 
by statistical analyses pertaining to evaluation of state and trends from water 
quality monitoring data. This report identifies two types of unquantified 
uncertainty, type A and type B. Type A uncertainty pertains to variation that 
would arise if the assessment was repeated in the future. For state, type A 
uncertainty is the difference in assessments between five-year assessment 
periods that is driven by flow regime variability and would occur even if there 
were no changes in the anthropogenic pressure in a catchment. For trends, 
type A uncertainty is variation in a trend assessment between assessment 
periods that occur due to influence of flow regime variability on water quality. 
type B uncertainty occurs due to differences in assumptions and choices made 
in the trend modelling process.  

Sample error Sampling error is the difference between a statistic that is calculated from a 
sample (e.g., a series of water quality observations) and the actual but 
unknown true value of that statistic (the population parameter). Sampling error 
is due to the variability inherent among data taken from a population (a 
statistical sample). 

Baseline state The state of compulsory NPS-FM attributes as of the 7 September 2017, 
which is assessed from observations for the preceding five-year period. For 
the purposes of this report, the period of 1 January 2013 to 31 December 
2017 is referred to as the baseline state period although AC may utilise 
different time frames. 
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Term Definition 

Current state The state of an attribute at the time of current reporting, which is based on the 
observations for the preceding five-year period. For the purposes of this report 
the period of 1 January 2016 to 31 December 2020 is referred to as the current 
state. 

Attribute A statistic calculated from the distribution of observations pertaining to an 
assessment period that is used to represent the state of freshwater systems 
in relation to specific values. Several compulsory attributes are defined in 
Appendix 2A and 2B of the NPS-FM 2020 and the potential numeric range is 
expressed as four bands (A, B, C and D). 

Model A representation of reality; cartoons, diagrams, graphs, computer simulations, 
and statistics and relationships derived from observations are all types of 
models. 

National bottom line 
(NBL) 

A minimum state set for several NPS-FM attributes. States below the NBL are 
considered degraded (if not due to natural causes) and councils must include 
actions in their plans that will improve these waterbodies to the NBL or a better 
state through time. 
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1 Introduction 
Assessment of water quality state and trends are requirements of Section 35 of the Resource 
Management Act (RMA: NZ Government 1991) and the National Policy Statement for 
Freshwater Management (NPS-FM; MFE 2020). The NPS-FM requires that the baseline state 
of certain water quality variables (called attributes) is established as an initial step in the 
National Objectives Framework (NOF) process (S3.10(3)). Baseline states are a basis for 
setting water quality targets to achieve forward-looking environmental outcomes and 
objectives. Targets must be set at or above the expressed baseline state (NPS-FM S3.11) (or 
at or above national bottom lines if the baseline state is below this threshold (S3.11(4) not 
withstanding several exceptions) (NPS-FM S3.11). Baseline states for attributes defined by 
the NOF are derived from statistics, such as median values, which are calculated from water 
quality observations1.  

The NPS-FM also requires that the condition of water bodies is systematically monitored over 
time (NPS-FM S3.18), and action is taken where monitoring indicates deteriorating trends 
(NPS-FM S3.19/S3.20). Councils must publish annually data describing attributes and the 
associated uncertainty of those data (NPS-FM S3.30). In addition, the NPS-FM requires 
councils to publish comparisons of current and target attribute states (S3.30(2)(b)), 
assessments of whether target attribute states are being achieved, and if not, whether they 
are likely to be (S3.30(2)(c)), and assessments of trends and their causes (S3.30(2)(d)).  

Auckland Council (AC) continues to monitor stream and river water quality at 37 sites across 
the Auckland region. Water samples are taken on a monthly basis and are analysed for up to 
26 water quality variables. The values of the water quality variables that are observed on these 
sample occasions (i.e., the observations), supplemented with additional monitoring by NIWA 
at one river water quality site, are the basis for assessment of the current water quality state 
and trends for streams and rivers in the region (Ingley 2021a; Ingley and Groom 2022).   

Flow influences water quality in rivers and streams, variation in flow across sampling 
occasions can be expected to impact to some degree on the assessment of water quality state 
and how this is changing over time (i.e., trends). For this reason, as well as others (such as 
water allocation and flood management), flow continues to be monitored at 15-minute intervals 
at 15 water quality monitoring sites. The flow data provided by this monitoring is important 
supplementary information in the analysis of water quality state and trends. It is important for 
AC to consider flow influences attribute state and trends, how to incorporate information about 
flow into assessment of state and trends, and to ensure that continued monitoring of water 
quality and flow is consistent with the requirements of the NPS-FM.  It is also important for AC 
to consider whether assessment of state and trends is consistent with the requirements of the 
NPS-FM and to be clear about the uncertainties associated with these assessments. AC 
therefore commissioned this study to provide guidance with respect to how to account for the 
influence of flow in both the sampling and analysis of water quality data and the implications 
of this specifically in relation to the requirements of the NPS-FM.     

The study has proceeded in two steps. First, we undertook a series of analyses to describe 
flow variation and the influence on state and trend assessment in the Auckland region. These 
analyses were to: 

 
1 In this study, we are concerned with observed water quality data. We acknowledge that assessments of baseline, or current 
state could be conducted in other ways. We also consider that it is likely that estimates of attribute states at unmonitored 
locations may be needed to inform NPS-FM processes and that modelling will necessarily be part of assessments.  
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1. Assess attribute state for selected attributes based on observed data. 

2. Assess variation in flows between state assessment periods and longer time periods,  

3. Assess the representation of flow variation by water quality observations 

4. Assess the relationship between water quality variables and instantaneous flow rate.  

5. Assess the impact on trend assessments of flow-adjustment and alternative plausible 
flow-adjustments.  

6. Assess the evolution of water quality state at sites using a modelling approach that 
elucidates the impact on water quality of flows at timescales longer than that 
represented by instantaneous flows (referred as the flow regime) 

The second step was to combine the results of the above analyses with our experience and 
expertise in state and trend assessment to provide guidance for: 

1. Monitoring practice to obtain unbiased estimates of state and assessing and 
considering uncertainties associated with evaluation of attribute state. 

2. Understanding the causes, and being transparent about, unquantified uncertainty 
associated with the evaluation of attribute state. 

3. Understanding the causes of, and being transparent about, uncertainties associated 
with trend assessments. 

4. Understanding, and being transparent about, the need to use models and modelling to 
make sense of water quality data and to carry out the requirements of the NPS-FM 
effectively and robustly. 

5. Considerations pertaining to assessments of trends and the requirement to take action 
where monitoring indicates deterioration and the implications for NPS-FM 
requirements. 

We also provide commentary on wider issues that are raised by this study with respect to 
potential changes to sampling frequency of monitoring and to improve spatial coverage.  
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2 Background 
This section outlines four concepts that are used in this study, and which are important to the 
methods and discussion sections that follow. 

2.1 Assessment of current state 
In this study we assess river water quality state for 10 variables including five (of 22) 
compulsory National Objectives Framework (NOF) attributes defined by the of the NPS-FM 
(MfE 2020) and two additional urban water quality attributes proposed for the Auckland region 
- soluble zinc and copper (Ingley 2021b; Ingley and Groom 2021). The approach we have 
taken to state assessment is set out below.  

Each table in Appendix 2 of the NPS-FM (2020) represents a NOF attribute (hereafter 
“attribute) that provides for a particular environmental value (either individually or in 
combination with other attributes). For example, Appendix 2A, Table 6, defines the nitrate 
toxicity attribute, which is defined by nitrate-nitrogen concentrations that will, in part so far as 
concerns nitrate toxicity, ensure an acceptable level of support for “Ecosystem health (Water 
quality)” values. The state of an attribute at a site is primarily defined by the value of one or 
more statistics (hereafter numeric attribute state) that are generally percentiles of water 
observations2. For example, for the nitrate-nitrogen attribute there are two numeric attribute 
states defined by the annual median (i.e., the 50th percentile) and the 95th percentile 
concentrations. For each attribute, the NPS-FM also defines categorical attribute states in four 
(or five) “NOF bands”, which are designated A to D (or A to E, in the case of the E. coli 
attribute). The NOF bands represent a graduated range of support for achieving environmental 
values from high (A band) to low (D or E band). Narrative descriptions of the level of support 
for the values are associated with each categorical attribute band. The ranges of the numeric 
attribute states that define NOF bands are defined in Appendix 2 of the NPS-FM (2020). For 
most attributes, the D band represents a condition that is recognised nationally as 
unacceptable (with the threshold between the C and the D band being referred to as a national 
bottom line (NBL)). In the case of the nitrate (toxicity) and ammonia (toxicity) attributes in the 
2020 NPS-FM, the B/C band threshold is the national bottom line, and for the E. coli and DRP 
attributes, no bottom lines are specified.  

In our opinion, the primary aim of the NOF bands is to provide a simple shorthand for 
communities and decision makers to discuss options and aspirations for acceptable water 
quality and to define objectives. Categorical attribute bands avoid the need to discuss 
objectives and targets in terms of technically complicated numeric ranges. Each NOF band is 
associated with a narrative description of the outcomes for values that can be expected if that 
NOF band is chosen as the objective. However, it is also logical to use NOF bands to provide 
a grading of the baseline and current state of water quality; either as a starting point for target 
setting or to track progress toward objectives. 

Water quality observations derived from monitoring are used to assess state. State 
assessment uses the numeric attribute state (e.g., median or 95th percentile of nitrate-nitrogen 
concentration) as a compliance statistic. The value of the compliance statistic for a site is 
calculated from the observations of the relevant water quality variable (e.g., the median value 
is calculated from the observed nitrate-nitrogen concentrations). Current state can be 
expressed as a numeric value or a NOF band. A band is assigned by comparing a site’s 

 
2 Note that the E. coli attribute includes two additional statistics that are defined by proportions of observations exceeding 
stated values.  
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compliance statistic to the numeric ranges associated with each NOF band (e.g., an annual 
median nitrate-nitrogen concentration of 1.3 mg/l would be graded as “B-band”, because it lies 
in the range >1.0 to ≤2.4 mg/l). For attributes with more than one numeric attribute state, bands 
are defined for each numeric attribute state (e.g., for the nitrate (toxicity) attribute, bands are 
defined for both the median and 95th percentile concentrations).  

An important consideration that arises with assessing numeric attribute states and NOF bands 
from observations is the issue of sampling variability, often referred to as ‘statistical sampling 
error’. Statistical sampling error means that we never know the true attribute state because 
we only ever have a finite sample (i.e., a subset of all possible water quality observations) of 
the true continuous time-series occurring in the river. We know that the attribute state 
estimated from the sample is sometimes higher than the true value and sometimes lower than 
the true value. The precision associated with a numeric attribute state indicates how different 
the true value is likely to be from the estimate and in this study, we represent this by a 95% 
confidence interval3. In the context of assessing attribute states, the precision of the estimate 
can be understood as the range over which we could expect the assessed state to vary if there 
had been multiple independent sets of samples taken, all other things being equal (i.e., 
samples being taken over the same sample period and at the same site). In some places in 
this report, we use the term “face value” to mean the evaluated numeric attribute state. This 
is to remind the reader that this value is imprecise. The precision of statistics (such as those 
used to define numeric attribute states) will increase as number of observations increases but 
is dependent on the variability of the observations and the number of observations. As a 
general rule, the rate of increase in the precision of the numeric attribute states slows for 
sample sizes greater than 30 (i.e., there are diminishing returns on increasing sample size 
with respect to precision; McBride 2005). 

The NOF is generally not clear whether numeric attribute states apply to percentiles of time or 
percentiles of samples. McBride (2016) notes that there are significant implications for the 
number of observations that are required if the former is intended. This is because a percentile 
of time indicates that the numeric attribute state is regarded to be an estimate of the population 
statistic. In this case, it is relevant to consider the risk that our estimate is incorrect (e.g., the 
assigned NOF grade is not exactly the same as the true (population) NOF grade). This risk 
depends on the precision of the estimated numeric attribute state and whether this is 
acceptable depends on decisions about the burden-of-proof (i.e., the level of evidence 
required to demonstrate that the grade is correct). McBride (2016) shows that if a 
precautionary approach to burden-of-proof is taken (i.e., high confidence the true grade is not 
worse than the assessed grade) then an appreciably larger sample is required than if an even-
handed (i.e., use the face value of the assessed grade) approach is taken. However, for some 
attributes, the NOF specifies the sampling frequency and duration (e.g., the E. coli attribute 
state is defined by four statistics that are calculated from three years of monthly observations). 
This suggests that we can assume that numeric attribute states apply to percentiles of 
samples, or equally, that we are taking an even-handed approach to the burden-of-proof. 

A further complication that arises with assessing attribute states is that for some attributes, 
the NOF specifies “annual statistics” (i.e., annual median; annual maximum) for assessing 
state (e.g., Nitrate and Ammonia Toxicity). This appears to indicate that assessments are 
made from one year of observations. However, if monitoring was monthly, this would result in 

 
3 The standard error of the mean is the most generally understood example of the precision of a statistical estimate. The 
standard error of the mean indicates how different the population mean is likely to be from a sample mean. The standard error 
of the mean quantifies how much the sample mean (i.e., an estimate of the population mean derived from a sample) would vary 
if you were to repeatedly sample the population.  
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only 12 observations and therefore very imprecise estimates of the median and 95th percentile 
(see below for discussion of assessment precision). In this study, therefore, we have assessed  
attribute states by calculating the statistics prescribed by the relevant NOF attribute table (e.g., 
median, 95th percentile) from records of observations of 5-years duration (hereafter a “state 
assessment period”) as recommended by McBride (2016) and as generally undertaken by 
national environmental reporting studies (Larned et al. 2018; Whitehead et al. 2021). We note 
that this is the approach implemented by AC for previous reporting, and is consistent with the 
approach taken by Land, Air, Water Aotearoa (LAWA), and analyses undertaken on behalf of 
the Ministry for the Environment (MFE) and Statistics New Zealand (StatsNZ) (e.g., Larned et 
al. 2018; Whitehead et al. 2021) 

In the state assessments undertaken in this study, we have evaluated numeric attribute states 
and their precision (i.e., the uncertainty associated with the sample error). We note that the 
reported precision is relevant whether the numeric attribute states are regarded as percentiles 
of time or percentiles of samples, but with different interpretations. If the numeric attribute state 
applies to the population (i.e., percentiles of time), the precision describes the uncertainty of 
the assessment of the true state. Alternatively, if the numeric attribute state applies to the 
sample (i.e., percentiles of samples), the precision can be interpreted as the range over which 
the sample statistic could be expected to vary if sampling had occurred on different days within 
the same sampling period.  

2.2 Influence of instantaneous flow and flow regime variability on water 
quality observations 

Many water quality measures in rivers and stream are influenced by the instantaneous flow 
rate (i.e., discharge at the time the sample was taken). In this study, we have used the mean 
daily flow to represent the discharge at the time the sample was taken. Water quality 
observations can vary systematically with instantaneous flow due to two kinds of physical 
processes. Observations may decrease systematically with increasing flow due to the effect 
of dilution of the contaminant, or increase with increasing flow due to mobilisation (“wash-off”) 
of the contaminant (Smith et al. 1996). The relationship between water quality measures and 
instantaneous flow may also depend on the location on the hydrograph when the sample was 
taken such that concentrations at a given flow rate can differ between the rising and falling 
limbs. In urban contexts this mechanism is referred to as “first flush” where at the initiation of 
the rising limb of the hydrograph, concentrations are higher compared to later when the 
sources of contaminants have been depleted or “washed off” (Lee et al. 2004).  

Different mechanisms may dominate at different sites so that the same water quality variable 
can exhibit positive or negative relationships with increasing instantaneous flow. Some water 
quality variables can be associated with a combination of dilution and wash off with increasing 
flow. For example, a portion of the suspended sediment load may come from point source 
discharges such as sewage treatment plants (dilution effect), but another portion may be 
derived from surface wash-off. Increasing flow in this situation may result in an initial dilution 
at low flow rates, followed by an increase at higher flow rates (Helsel et al. 2020). 

Relationships between water quality variable observations and instantaneous flow are 
commonly represented by bivariate (i.e., observation - flow) statistical models (e.g., Helsel et 
al. 2020; Snelder et al. 2021a). These models are used, in a process called “flow-adjustment”, 
to remove the confounding influence of instantaneous flow so that the trend in the observations 
can be more confidently assessed (see Section 4.4). An important assumption underlying 
these models is that the relationship between the observations and instantaneous flow is 
constant in time. This assumption simplifies the definition of the model but is likely to be 
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violated in situations where catchment processes associated with the generation, storage, 
transport and transformation of contaminants are changing (see Section 4.6).  

Notwithstanding the simplifying assumptions underlying bivariate observation - flow models, 
selecting the most appropriate statistical model to represent the relationship is complicated for 
several reasons. First, observation - flow relationships differ between variables at individual 
sites and between sites for a variable. Second, there is often a trade-off between the 
goodness-of-fit and the physical plausibility of the relationships represented by models. Simple 
models such as linear regression will represent physically plausible monotonic increasing or 
decreasing relationships between observations and flow but these may have poor goodness-
of-fit. More complicated models allow for non-linear relationships between observations and 
flow. These models can represent more complex relationships that may have plausible 
mechanistic explanations. For example, non-linear models can represent large increases in 
concentrations of contaminant with increasing flow that could be expected where a threshold 
of movement of a contaminant is crossed. Non-linear models can represent local maxima that 
occur if initially increasing concentration with flow is followed by source depletion or dilution at 
very high flows. However, non-linear models may also represent physically implausible 
relationships between observations and flow such as multiple local maxima (Snelder et al. 
2021a). Care and expert judgment in selecting observation - instantaneous flow models is 
therefore required and are discussed in Section 4.3. 

Flow also varies at longer than timescales “instantaneous flows” in response to variation in 
hydrological processes including precipitation, evaporation and associated storage and 
release of water from the catchment (Sofi et al. 2020). This hydrological variability is 
manifested as flow regime variation, but also water quality variability because contaminant 
mobilisation, transport, storage and dilution is affected by the same hydrological processes 
(Gascuel-Odoux et al. 2010). In this study, we refer to the “flow regime” to mean characteristics 
of river flows at longer than the daily timescale that we use to indicate instantaneous flow. 
Flow regimes can be characterised by many flow statistics such as mean and median flows, 
flow variability and seasonality (Snelder and  Booker 2013). Like instantaneous flows, the flow 
regime at a site varies over time. For example, periods of uncharacteristically low or high flows 
can occur at various timescales (e.g., weeks, months and years).  

Flow regimes are influenced by anthropogenic activities occurring within the catchment such 
as abstraction and land use changes and are also by influenced by natural processes such 
ecological succession of land cover from scrub to forest (Best 2019; Chen et al. 2019; Margariti 
et al. 2019). Flow regimes are also strongly controlled by climatic processes such as 
precipitation and evaporation (Sofi et al. 2020). For example, effective rainfall (precipitation 
minus evaporation) drives water storage and release from catchments at timescales of days 
to years (Wilusz et al. 2017). Irrespective of the cause, flow regime variability is linked to 
variation in water quality and in study, we undertake analyses to show that link. The link 
between flow regime variability and water quality variability is important because it impacts on 
assessments of water quality state and trends.  

In this study, we do not undertake any analysis of the causes of the flow regime variability. 
However, some of the analyses we present indicate that water quality oscillates at interannual 
timescales. These oscillations are evidence that water quality variation is partly attributable to 
quasi-periodic climate variation such as the El Niño-Southern Oscillation (ENSO; Mullan 1996; 
Salinger and Mullan 1999). Evidence for the link between ENSO and water quality variation in 
New Zealand at interannual timescales has been provided by studies of fluctuations in water 
quality trend assessments at time scales from 5 to 15 years to (Scarsbrook et al. 2003; Snelder 
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et al. 2021b). Therefore, when we refer to the impact of “flow regime variability” on water 
quality, it is appropriate to consider that climatic variation is at least partly involved. The 
relevance of climatic variation is that it is factor that cannot be managed but may influence 
state and trends and can confound determination of the anthropogenic causes of water quality 
changes.  

2.3 Consideration of flow with respect to water quality sampling, state and 
trend assessment 

Because the specification of the NOF attributes in the NPS-FM makes no mention of flow, it 
is reasonable to assume that attribute states, and therefore monitoring data, should represent 
the full flow range. This makes sense if we consider that the purpose of NOF attributes is to 
manage the effect of water quality on values such as ecosystem health and human health risk. 
Because these values are not specific to certain flow states4, it is logical that attribute states, 
and monitoring data, should represent the full flow range.  

In this regard, we consider that there are different considerations associated with the flow at 
the time of sampling for state assessments compared to trend analysis. For assessment of 
attribute state, we assume that the monitoring data should represent the full flow distribution. 
Therefore, the question is whether the flows represented in the observation data are a 
reasonable representation of the flow distribution. In principle, this will be true if sampling is 
punctual. Punctual sampling involves setting the sample frequency and occasion (i.e., date) 
in advance and then not deviating from this schedule. This will ensure that sampling is random 
with respect to flow and, as the number of observations increase, the sampled flow distribution 
will increasingly closely correspond to the actual flow distribution5.   

A complication that arises with assessing attribute states is that there is likely to be 
hydrological variation between state assessment periods that is manifested as flow regime 
variation. Because water quality observations are generally influenced by the same processes 
that influence flow regimes, state assessments can be expected to vary between assessment 
periods (e.g., between baseline and current state) in association with flow regime variation.  
This produces a component of uncertainty in state assessments that is in addition to precision, 
which we refer to as “unquantified uncertainty of type A”. In attribute state assessments, 
unquantified uncertainty of type A can be understood as the variation in state between five-
year assessment periods that is associated with flow regime variability and would occur even 
if there were no changes in the anthropogenic pressure in a catchment. 

Trend analysis seeks to quantify the relationship between the water quality observations and 
time. In this context, flow can be considered a “covariate”; a variable that is also related to the 
water quality observations but whose influence is confounding the water quality – time 
relationship that trend analysis seeks to expose. The process of flow-adjusting is used to 
remove the influence of instantaneous flow on the water quality observations prior to trend 
analysis. Flow-adjustment has two purposes. First, it theoretically increases the statistical 
power of the trend assessment (i.e., increase the confidence in the estimate of direction and 
rate of the trend) by removing some of the variability that is associated with flow. Second, it 
removes any component of the trend that is attributable to a trend in instantaneous flow (e.g., 
a trend in the flow on sample occasions such as increasing or decreasing flow with time). 
However, whether it is appropriate to undertake flow-adjustment depends on the objectives of 

 
4 Although certain flow states may be associated with greater human contact with water and therefore greater risk. 
5 We note that practically, observations at very high flow are not achievable for health and safety reason so that some 
rescheduling of sampling is inevitable, and observations cannot be truly random with respect to flow. 
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the trend assessment. If the aim is to understand whether a management action has affected 
water quality over time, then the contribution of flow to the trend is a confounding factor and 
flow-adjustment is promoted as a means to increase the confidence in the trend assessment 
(Snelder et al. 2021a). In contrast, if the aim of the assessment is to quantify the water quality 
trend that actually occurred, then flow-adjustment may not be applicable. An example where 
quantification of the actual (unadjusted) trend might be desired is where a biological change 
has occurred in a stream and there is interest in whether this was associated with changes in 
water quality variables.  

In our opinion, irrespective of the purpose of trend assessment and whether this indicates 
flow-adjustment is required or not, it is desirable that monitoring data should represent the full 
flow distribution to avoid biased trend assessments. If the purpose is to quantify the water 
quality trend that actually occurred, then the sample should represent the population as well 
as possible and therefore samples should be representative of the flow distribution. On the 
other hand, if flow is regarded as a confounding factor whose influence is to be removed, there 
is a need to first model the relationship between instantaneous flow and observations (see 
Section 2.2). In this case it is also desirable that monitoring data represents the full flow 
distribution. A complication that arises in this case is that, for some water quality variables, 
there are rapid changes in the flow – observation relationship at high flows. If sampling is 
punctual, there will be relatively few high flow observations, which impacts on the accuracy of 
the model at high flows. In addition, there is a strong tendency for observations at high flow to 
have high variability, which also impacts on the accuracy of the model at high flows. This 
combination introduces considerable uncertainty and subjectivity into instantaneous flow - 
observations models, which is described later.  

2.4 Use of models 
Section 1.6 of NPS-FM directs councils “to use best information available” and “in the absence 
of complete and scientifically robust data, the best information may include information 
obtained from modelling as well as partial data…”. However, trend analysis involves fitting 
statistical (regression) models and characterisation of population by calculating summary 
statistics, such as the median, from a sample involves making statistical assumptions. 
Therefore, the requirements to assess water quality state and trends are reliant on models 
and, accordingly, the outputs should be interpreted as being uncertain and influenced by the 
associated modelling procedures and assumptions.  

From a technical perspective, numeric attribute states are models of some characteristic of 
the distribution (e.g., a median describes the characteristic “central tendency” of a data). It is 
important to recognise the assessed attribute state is a model (i.e., the assessed attribute 
state is a representation of reality) because that clarifies that the assessment is uncertain; 
irrespective of whether it is interpreted as applying to the population (i.e., percentiles of time) 
or the sample (see section 2.1). In this report, we illustrate the uncertainty that is associated 
with numeric attribute states, provide some commentary on how this impacts the ability to 
detect change and attribute change to causes and suggest how to respond to the uncertainty.   

Trend assessment is a process of building a statistical model of the behaviour of a variable 
over time from a series of observations (Helsel et al. 2020). The model is built from 
observations pertaining to a site/variable combination that represent a sample of the 
population (i.e., a sample of the actual conditions over the entire period of interest). The trend 
is an estimate of what actually occurred, which is subject to ‘statistical sampling error’. 
Therefore, trend assessments are always associated with quantifications of uncertainty that 
are analogous to the quantification of precision in assessments of state. 
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Like all statistical models, a trend assessment is a simplification of reality that aims to expose 
the most important features of the true relationship or pattern of interest. The simplest and 
most salient features of the relationship between a variable and time are the direction and the 
rate of change in the variable. Although there are accepted methods for trend assessment 
(e.g., Snelder et al. 2021a), their application automatically implies making assumptions and 
simplifications. It is important to be aware that quantifications of uncertainty accompanying 
trend assessments express the combination of the statistical sampling error’ interacting with 
the mathematical description of the trend represented by the model. This quantified 
uncertainty does not include the impact of model assumptions and necessary methodological 
or procedural judgements made by the analyst in performing the trend assessment. These 
aspects introduce additional uncertainties that are unquantified by the trend assessment. We 
refer to these uncertainties as “unquantified uncertainty of type B”. In this report we show that 
unquantified uncertainties associated with trend assessments may be consequential and 
therefore need to be kept in mind when interpreting and using the results of trend analysis. 
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3 Data 
In this study we used stream flow and water quality data pertaining to river and stream state 
of environment water quality monitoring sites in the Auckland region (Figure 1). Stream flow 
data (hereafter “flow”) and water quality observation data were provided by the Research and 
Evaluation Unit (RIMU), Auckland Council) in six files as listed in Table 1. 

Table 1. Flow and water quality data sources. 

File Name Description Format 

20211210_RiverWQMaster.csv Water quality observations. comma separated 
variable 

20211701_Master_Land 
Cover_WQ.xlsx 

Land cover (LCDB 5) breakdown of each 
water quality site catchment through 

time. 

Excel 

Daily mean flow data currently 
paired sites.xlsx 

Mean daily flow for multiple flow sites. Excel 

6604 Matakana Gaugings.xlsx Flow measurements from a single site Excel 

44603 Cascades Gaugings.xlsx Flow measurements from a single site Excel 
Makarau at Coles mean daily 
flows.xlsx 

Flow measurements from a single site Excel 

Sites and Coordinates_2.xlsx Water quality measurement site 
metadata 

Excel 

 

The water quality observations file contained data for 37 unique sites that had been collected 
by AC over the period (1985 to 2020, although individual sites had varying record length). Two 
sites (Hoteo River (site 45703) and Rangitopuni River (site 7805)) had additional data 
collected by NIWA (site names “AK1” and “AK2”) that supplemented the Auckland Council 
data.  

The water quality data comprised observations of 37 water quality variables on discrete 
occasions defined by dates. The ten water quality variables that were the focus of this study 
are shown in Table 2. The observation frequency was generally/approximately monthly at all 
sites. Hereafter, we refer to discrete observation of a water quality variable as an “observation” 
and to each date on which an observation occurred as an “observation-date”.  

The analysis of samples for total oxidised nitrogen concentrations (NNN) has been carried out 
for many more years than nitrate-nitrogen concentrations (which were initiated by AC in 
December 2018). Following Ingley (2021b) NNN values have been used as a proxy for nitrate-
nitrogen. This assumes that nitrite concentrations are low compared to nitrate concentrations 
and can be ignored. 

Clarity observations were provided by AC as “Clarity (converted)” values for the purposes of 
comparison to the suspended fine sediment NOF attribute. These values were calculated 
from turbidity (NTU) based on Franklin et al. (2019). This national adjustment has not been 
validated for the Auckland region or specific sites and state assessment is considered 
provisional until such verification is undertaken. AC also provided pH adjusted ammonia 
observations as the ammonia toxicity NOF attribute is intended to apply to these adjusted 
values, rather than ammoniacal N. Following Ingley (2021b), we used pH adjusted 
ammoniacal nitrogen observations to assess state but the non-adjusted ammoniacal 
nitrogen in all other analyses. We note that these conversions introduce uncertainty to the 
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provided values (in addition to the measurement and analysis uncertainties). No attempt has 
been made to include these uncertainty contributions. This study included the metals copper 
and zinc at some, but not all, sites because monthly water quality samples have only been 
analysed for metals at all sites since 2018. When reported in this study, metals have not 
been adjusted for dissolved organic carbon or hardness.  

Table 2. Water quality variables analysed in this study.  

Water quality 
variable 

Unit Auckland 
Council Data 

name 

Alias Comment 

Clarity m Clarity  CLAR This is referred to as the Suspended 
fine sediment attribute in Table 8 of 
the NPS-FM. Clarity was calculated 
from turbidity (NTU) by AC except for 
analyses that were uniquely 
performed on data collected by NIWA 
(Hoteo River and Rangitopuni River) 
where measured clarity data was 
used. 

Escherichia coli CFU/100 
mL 

E. coli  ECOLI  E. coli is included as an attribute for 
all lakes and rivers in Table 9 of the 
NPS-FM. This differs from 
requirements for primary contact sites 
set out in Table 22 of the NPS-FM. 

Ammoniacal 
nitrogen 
 

mg/L Ammonia as N NH4N A measured and not corrected for pH 
mg/L pH adjusted 

NH4  
NH4_a

dj 
Corrected for pH by AC regarding 
Ammonia (toxicity) attribute Table 5 in 
the NPS-FM. 

Dissolved inorganic 
Nitrogen 

mg/L DIN  DIN DIN is specifically identified in NPS-
FM S3.13 but its monitoring and 
assessment requirements are 
unspecified. 

Nitrate-Nitrite-
Nitrogen 

mg/L Total Oxidised 
N  

NNN Used as a proxy for the Nitrate 
(toxicity) attribute in Table 6 of the 
NPS-FM. 

Dissolved reactive 
phosphorous 

mg/L DRP  DRP Dissolved reactive phosphorus Table 
20 of the NPS-FM. 

Total Nitrogen mg/L Total N  TN Not included as a compulsory 
attribute for river water quality in the 
NPS-FM. 

Total Phosphorous mg/L Total P  TP Not included as a compulsory 
attribute for river water quality in the 
NPS-FM. 

Soluble Copper mg/L Dissolved 
Copper  

CU  Draft proposed river water quality 
attribute for consideration by 
Auckland Council. 

Soluble Zinc mg/L Dissolved Zinc  ZN Draft proposed river water quality 
attribute for consideration by 
Auckland Council.  

 
Continuous mean daily flow data was provided for 21 of the water quality sites. Flows were 
measured at the water quality site, or on the same river segment and within 2 km of the sample 
location. Two sites were discarded. The Matakana site, (site 6604) was discarded because 
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the flow data were derived from a limited number of gauging observations. The Paerata Rise 
site, (site 43968) was discarded because it had less than 10 years of flow observations. The 
Newmarket Stream site (site 10814) was discarded because water quality monitoring was only 
established in 2018. The Okura and Kumeu River sites (7502 and 45313) were discarded 
because they were closed in 2015. The Oakley Creek site (8110) was discarded because the 
flow site location was >6km from the water quality site and was therefore considered not 
sufficiently representative.  

The remaining 15 sites have been used for analysis (see Figure 1 for locations). The site 
details, including the names of the related flow measurement sites are listed in 0, Table 8. 
Auckland Council water quality and flow sites names are often, but not always, the same. For 
consistency in this report, the water quality site names are used rather than the flow site 
names. The relationship between the two is provided in 0, Table 8. 

 

Figure 1. Locations of all of Auckland region’s state of environment river water quality 
monitoring sites including the 15 paired water quality and flow sites.  
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4 Methods 
In this study, we undertook six sets of analyses to describe flow variation and its influence on 
state and trend assessment in the Auckland region. The methods used in these analyses are 
set out in the following six subsections. 

1. Assess current attribute states and the precision of these assessments based on the 
water quality variables shown in Table 2 for the 5-year period ending 2020. 

2. At each site, compare variability in flow regimes between each of four five-year state 
assessment periods between 2013 and 2020 and to the long-term flow record.  

3. At each site, compare the instantaneous flow conditions sampled on water quality 
monitoring occasions for each of four five-year state assessment periods between 
2013 and 2020 and describe any bias flow associated with the water quality monitoring 
observations. 

4. At each site, for each variable, consider flow-adjustment using alternative functional 
forms for flow-concentration models. Use expert judgement to select the most 
appropriate model to undertake flow-adjustment and compare the results to those 
obtained using an alternative “default” flow-concentration model. 

5. Calculate and compare flow-adjusted vs non-adjusted trends for the period 2007-2017 
and rolling trends to 2011-2020. 

6. Use an alternative modelling approach to describe observation – flow relationships and 
trends to those derived using the above methods. 

The details of these analyses are explained in the following sections.  

4.1 State assessment 
We assessed current numeric states for the 5-year period ending 2020 for the following 
variables, using the following listed statistics and as set out in the remainder of this section: 

• E. coli, using four statistics (exceedances of 540 and 260 E. coli/100 mL, median and 
95th percentile).  

• DRP, using the median and 95th percentile.  

• Nitrate, using the median and 95th percentile.  

• Ammonia, using median after adjusting for pH. Because it is not possible to estimate 
the uncertainty for a maximum value, we have not included it here.  

• Clarity (converted from turbidity (NTU) representing the suspended fine sediment 
attribute), using the median.  

• DIN, reported as the median and 95th percentile  

• Dissolved Zinc, following Ingley (2021b), numeric attribute state was defined by 
median and 95th percentiles and categorical attribute state was defined based on 
Gadd et al. (2019). There was no adjustment for dissolved organic carbon or 
hardness. 

• Dissolved Copper, as for Zinc 



 

 Page 26 of 100 

For each water quality variable at each site, the numeric attribute state (i.e., face value of the 
relevant statistics described above), NOF band (where applicable) and the 95% confidence 
interval for the numeric attribute state was calculated for rolling 5-year state assessment 
periods between 2013 and 2020 (inclusive). An assessment period of five years was used for 
all variables in the state assessment. This is consistent with the methods used by AC for 
environmental reporting (Ingley and Groom 2022). 

Medians and 95th percentiles were calculated using the Hazen method. Values at or outside 
detection limits were retained at the detection limit without imputation. Precision for both 
percentiles and proportions (i.e., for E. coli, exceedances of 540 and 260 E. coli/100 mL) were 
estimated based on the method of Wilson (1927) as recommended by Brown et al. (2001) and 
are expressed as the 95% confidence interval. 

When grading sites based on NPS-FM attributes, it is general practice to define the acceptable 
proportion of missing observations (i.e., data gaps) and how these are distributed across 
sample intervals so that site bands are assessed from comparable data (Whitehead et al. 
2021). The time period, acceptable proportion of gaps and representation of sample intervals 
by observations within the time period are commonly referred to as site inclusion or filtering 
rules (e.g., Larned et al., 2018). In this study, a period of five years was used for state 
assessment. Some NOF attributes require 5-years of monthly data but more generally, 5 years 
represents a reasonable trade-off for grading assessments because it yields a sample size of 
more than 30 observations. The five-year period for the NPS-FM state analyses is consistent 
with previous national water-quality state analyses (Larned et al. 2018; Whitehead et al. 2021).  

Because water quality data tend to fluctuate seasonally, it is also important that each season 
is well-represented over the period of record. AC has sampled river water quality at a monthly 
frequency for the period under consideration in this analysis and therefore we defined seasons 
by months. We applied a filtering rule that restricted site and variable combinations in each 
state assessment period to those with measurements for at least 90% of the sampling intervals 
in that period (i.e., at least 54 of 60 months). We did not place a restriction on the allowable 
proportion of gaps for individual seasons because this first requirement (90% of sample 
intervals) means the potential impact of missing seasonal observations is minimal. Site × 
variable combinations that did not comply with these rules were excluded from the state 
analysis. We note that for grading the suspended fine sediment and E. coli attributes, the NPS-
FM requires 60 observations over 5 years. For monthly monitoring, this requires collection of 
all monthly observations (i.e., no missing data). For this study, we relaxed the rule to require 
observations for 90% of months over the 5-year period (54 observations). Both this relaxation 
and our default sample number are subjective choices. This is consistent with the methods 
used by AC for environmental reporting (Ingley and Groom 2022) 

4.2 Variability of flow regimes between assessment periods 
The flow regime for a five-year state assessment period is unlikely to perfectly represent the 
flow regimes of alternative five-year state assessment periods or the long-term flow regime. 
An assessment period that is associated with a drought, for instance, will feature more 
frequent low flows than the long-term flow regime. An assessment period in which rainfall was 
higher will have higher mean flows and more frequent high flows that the long-term flow regime 
and the assessment period that was associated with a drought.  

We quantitatively assessed differences in flow regimes at the time scale of assessment 
periods and compared these to the long-term flow regime in three steps. First, at each site we 
calculated the mean flow in every month of record. Second, we calculated the mean of mean 
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monthly flows in each month of the entire record and used this to represent the long-term flow 
regime. Third, we calculated the mean of mean monthly flows in each 5-year state assessment 
period between 2013 and 2020 (i.e., four assessment periods ending 2017, 2018, 2019 and 
2020) and used these to represent that period’s flow regime.  

We plotted these data to visualise the variability of flow regimes between assessment periods 
and the deviation of flows in each assessment period to the long-term flow regime. We did not 
undertake formal statistical testing of the significance of the differences in flow regimes 
because it is not clear what type of test would be relevant or what the benefit of statistical 
confidence in differences would be. However, we performed analyses that combined the water 
quality data and flows to demonstrate that differences in flows between assessment period 
contributes to variation in water quality assessments (see Section 4.6).  

4.3 Representation of instantaneous flow by water quality observations 
The instantaneous flow at the time of water quality observations were assessed graphically 
by timeseries plots that depict the super-position of the observations on the flow hydrograph. 
These plots indicate the distribution of observations over the flow range and variability of flows 
over time. For water quality variables that are affected by streamflow it is ideal if, for any state 
assessment period, the distribution of flows on observation dates matches the distribution of 
all flows in the assessment period. If this is the case, then observations are unbiased with 
respect to flow. We used flow duration curves (FDC) to graphically assess whether the 
distribution of flows on observation dates matched the distribution of all flows through the state 
assessment period. A FDC is a cumulative frequency distribution that shows the percent of 
time specified discharges were equalled or exceeded during a given period. FDCs indicate 
the flow characteristics of a stream over the full range of discharge, but with no indication of 
the sequence of occurrence of the flows. The y-axis of an FDC indicates the flow and the x-
axis represents either the rank or the percentage of time that the flow has been exceeded (by 
scaling the flow ranking from 0% to 100%). 

We assessed whether the distribution of flows on observation dates matched the FDC for 
rolling 5-year assessment periods between 2013 and 2020 in two steps. First, for each site, 
we produced FDCs from the daily flows in each 5-year period. Second, for each site, we 
overplotted these assessment period FDCs with points representing the observation dates.  

The portion of the FDC outside the ranges of the observation-date flows are of particular 
interest. Flows that are not represented by observations limit the ability to accurately assess 
and model the relationship between water quality variables and instantaneous flow (see 
Section 4.4). In general, we can expect that modelled relationships are less reliable near the 
end and outside the range of the observation-date flows. Inaccurate representation of water 
quality observation – instantaneous flow relationships have implications for flow-adjustment 
(see Section 4.4) and for calculation of contaminant loads (e.g., Snelder et al., 2017). The 
percentage of the FDC that is within the observation-date flow range provides a measure of 
the proportion of the time a site’s flow was represented by the observations. The area under 
the FDC represents the total volume of water passing a flow measurement site. Therefore, the 
area under the FDC that is represented by observations provides a measure of the proportion 
of the total volume of flow that is represented by the observations. For each site, we also 
evaluated the proportion of time, and the proportion of volume, that was represented by the 
observations for rolling 5-year state assessment periods between 2013 and 2021.  

We also quantitatively assessed whether there was bias in the representation of the flow 
distribution at each site by the observations. This assessment used the Kolmogorov-Smirnov 
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test to assess whether the distribution of flows on observation dates matched the distribution 
of all flows within each five-year assessment period. The Kolmogorov-Smirnov test assesses 
whether two sets of data are drawn from the same cumulative frequency distribution (CFD). 
The Kolmogorov-Smirnov test statistic is the maximum discrepancy between the CFDs 
derived from the two datasets. For our data, this means the largest difference in the proportion 
of the time a given flow is equalled or exceeded. This statistic can vary between zero 
(indicating the distributions are exactly the same) or one (indicating there is no overlap 
between the two distributions). The significance of the test statistic is assessed based on the 
null hypothesis (Ho) that the two datasets are from the same distribution. If the p-value for the 
test is less than alpha (which we set at 0.05) the null hypothesis is rejected, and it can be 
concluded that the two distributions are significantly different. If the p-value for the test is 
greater than alpha, the null hypothesis is not rejected, and it can be concluded that the two 
distributions are consistent with the same population distribution. Note that the test can only 
determine that two distributions are different—it does not indicate whether the change is an 
increase or decrease in the mean or due to a change in the variance or extremes (Kundzewicz 
and Robson 2000). 

A complication arises in our analysis due the non-independence of daily flows (i.e., their 
autocorrelation) that are used to characterise the distribution of all flows. The non-
independence of daily flows violates an assumption of the Kolmogorov-Smirnov test that the 
observations are independent (Lanzante 2021). This results in under-estimation of the 
variance and therefore under-estimation of the p-value. There are corrections that can be 
made to adjust for autocorrelation of data in Kolmogorov-Smirnov tests (e.g., Lanzante 2021). 
However, in this study we were primarily interested in the strength of the evidence that the two 
distributions are consistent with the same population distribution. We were therefore not 
concerned about under-estimation of the p-value because this leads to a more conservative 
assessment of the evidence for the two distributions being consistent with the same population 
(i.e., we are more likely to reject this). We therefore did not apply any correction to the 
Kolmogorov-Smirnov test p-value. For each site, we therefore calculated the Kolmogorov-
Smirnov test statistic and its significance (Massey 1951) for rolling 5-year state assessment 
periods between 2013 and 2021. We interpreted the p-values >0.05 for these tests as strong 
evidence that the distribution of observation-date flows was an unbiased sample of all flows 
within each five-year assessment period. 

4.4 Flow-adjustment 
We first assessed the general level of association between water quality observations and 
instantaneous (daily mean) flow using the non-parametric Kendall rank correlation coefficent 
(known as Kendall’s tau; 𝜏𝜏). Kendall’s tau is a measure of rank correlation; the similarity of the 
orderings of the data when ranked by each of the quantities (Zar 1999). We used 𝜏𝜏 to quantify 
the level of monotonic association between the water qualtiy observations and their associated 
instantaneous flows. Kendall’s 𝜏𝜏 takes values between -1 and +1; a positive value indicating 
that the observations increased with increasing instantaneous flow and vice versa. For each 
site and variable combination, we calculated Kendall’s 𝜏𝜏 and plotted the distributions of results 
over sites for each variable as box and whisker plots to indicate the general level of association 
between water quality observations and instantaneous flow and the inter-site variability of this 
association within each variable. 

Flow-adjustment builds a statistical model of the relationships between water quality variable 
observations and instantaneous flow that is subsquently used to remove the confounding 
influence of instantaneous flow in trend analysis (Helsel et al. 2020; Snelder et al. 2021a). As 



 

 Page 29 of 100 

mentioned in Section 2.2, expert judgment is required in selecting observation - instantaneous 
flow models because there are many alternative models and selection of the most appropriate 
model requires striking a balance between physical plausibility and goodness-of-fit. This 
means that there is more than one plausible model, which introduces unquantified 
uncertainties into trend analysis that we refer to in Section 2.4 as unquantified uncertainty of 
type B.  

The purpose of the analyses of flow-adjustment in this study was to assess the extent to which 
selection of model representing the relationship between water quality observations influences 
the results of trend analysis. We used alternative plausible instantaneous flow - observation 
models to produce two sets of flow-adjusted water quality observations. We then undertook 
two sets of trend analyses based on the alternative data and compared the results. 

There are a wide range of statistical regression methods (linear and non-linear) that have 
been, or could be, used to model the observations - instantaneous flow relationships. In this 
study we used a range of statistical regression models that have been used in previous studies 
to represent the observation – instantaneous flow relationship (e.g., Smith et al. 1996; 
Ballantine and Davies-Colley 2014; Larned et al. 2016). In each case the log (base 10) of flow 
was used as the independent model variable. The eight models were as follows:  

1. linear model of untransformed water quality and log of stream flow (LinLog), 

2. linear model of log of water quality and log of stream flow (LogLog), 

3. locally estimated scatterplot smoothing (LOESS) with a span of 0.7 applied to 
untransfomed water quality and stream flow (LOESS 0.7), 

4. as for 3, but with log of water quality(LOESS 0.7-Log), 

5. LOESS with a span of 0.9 (LOESS 0.9), 

6. as for 5 but with log of water quality (LOESS 0.7-Log), 

7. generalised additive model (GAM) with smoothing spline local fitting , 

8. as for 7 but with log of water quality (GAM-Log). 

LOESS and GAM models allow more fexible fit to the data and can represent non-linear 
relationships. For LOESS models, the span refers to the proportion of points that are 
considered when calculating the weighted local regression at each point. A large span 
produces a smoother more global fit than a smaller span and a smaller span produces a model 
that conforms more to the local data. We did not trial LOESS models with spans less than 0.7 
because our experience is that these almost always result in implausible modeled 
relationships.  

Only site and variable combinations with at least 54 observations were included in this 
analysis. This limit was chosen because it represents the minimum observations required to 
conduct a water quality trend assessment for a 5 year period with monthly sample intervals 
and with the commonly used requirement that observations are available for at least 90% of 
sample intervals (Whitehead et al. 2021). 

The model goodness-of-fit was assessed using the coefficient of determination (r2) and the 
model p-value. The model r2 indicates the proportion of the variability in the water quality 
observations that is explained by (log of) the flow. The model p-value indicates the degree of 
evidence that the fitted relationship is consistent with the population. Low p-values indicate 
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that the fitted relationship would be unlikely were there no relationship between the 
observations and flow in the population.  

To keep all comparisons to site and variable combinations for which an instantaneous flow - 
observation relationship was considered objectively robust, combinations for which none of 
the eight possible statistical models had r2 > 20 % and p < 0.01 were discarded. To enable 
comparison between the models, we always calculated r2 using the raw water quality values 
and the log of the flow, irrespective of whether the relationship was derived between the log 
of the water quality variable and the log of the stream flow. The r2 and p thresholds were 
subjectively chosen. Flow-adjustment of data that does not achieve these thresholds is 
unlikely to have a noticeable effect on the trend assessment.  

For all site and variable combinations that met the above criteria, all eight models were 
considered by the expert. This was aided by producing scatter plots of the data (observation 
- instantaneous flow) with all eight models super imposed on the plot. In addtion, the r2 and p 
values for each model were provided. The expert selected the “most suitable” model based 
on three considerations recommended by Snelder et al. (2021) including: (1) homoscedasticity 
(constant variance) of the regression residuals, (2) model goodness-of-fit measures and (3) 
plausibility of the shape of the fitted model. It is noted that homoscedasticity of the regression 
residuals indicates that the model fits through the central tendency of the data and is not overly 
influenced by particular values.  

We used the LOESS 0.9 model to provide an alternative “default model” to that selected by 
the expert. The purpose of the default model is to provide an alternative flow-adjustment to 
indicate how sensitive trend analysis results are to this choice. The choice of the LOESS 0.9 
model is subjective. In our experience LOESS 0.9 is a reasonable compromise between the 
purely linear model (i.e., LinLog), which is often unable to represent increasing rates of change 
in observations at high flows and more flexible models (e.g., LOESS 0.7), which can result in 
implausible modeled relationships.  

Flow-adjustment was carried out by subtracting the observed water quality values from the 
corresponding values predicted by the using the expert-selected and LOESS 0.9 models (i.e., 
to obtain the model residuals). The model residuals are used as input for flow-adjusted trend 
assessment.  

To visualise the impact of flow-adjustment and the temporal variation in the observations, we 
produced time series plots of two sets of flow-adjusted data and the raw (i.e., non-flow-
adjusted). To compare the flow-adjusted and raw time series, we offset the residuals of the 
adjusted values by the median of the raw observations so that their magnitudes were 
consistent with the raw values. Note that the offset-residuals may include negative values 
where the flow-derived water quality estimate is larger than the observed water quality. 

4.5 Trend analysis 
We assessed trends for all 81 site and variable combinations that we had flow-adjusted (see 
Section 4.4). Trends were assessed for rolling assessment periods of 10 years that increment 
by one year, starting from 2007-2017 (inclusive) and finishing with 2011-2020 (inclusive). The 
trend assessment was carried out with both sets of flow-adjusted data (i.e., based on a model 
selected by an expert and based on the default LOESS 0.9 model see Section 4.4) and the 
raw (i.e., unadjusted) data. 

To assess variability in trend assessments of differing time-period and duration over the 
longest possible timescale, we performed rolling 5- 10- and 20-year trend analyses for 
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selected variables for two sites with the longest monitoring records in the Region: Hoteo River 
(NIWA) and Rangitopuni River (NIWA). We used these sites due to the continuity of record 
between 1989 and 2020 but note that NIWA has discontinued monitoring at Rangitopuni from 
2021 and the continuation of these sites is represented by the AC site Rangitopuni River @ 
Walkers / 7805. We calculated trends for four relevant water quality variables (NNN, DRP, 
NH4N, and CLAR) for which there was a continuous record of monthly observations from 1989 
to 2020 (inclusive). We note that in these assessments we used measured water clarity rather 
than calculated from turbidity (see Table 2). Trend assessments were performed for time-
periods of 5, 10 and 20 years duration starting in 1990 with time-periods incrementing by one 
year until the end of 2020 was reached. This resulted in 27, 22 and 12 trend assessment 
periods of 5, 10 and 20 years duration, respectively. These trend assessments were 
performed with one set of flow-adjusted data (i.e., based on models selected independently 
by the expert, see Section 4.4) and the raw (i.e., unadjusted) data. 

Trends were assessed using the methods set out in Whitehead et al. (2021), which for brevity 
have not been reproduced in their entirety in this report. Briefly, trends were analysed in four 
steps.  

• First, we filtered the sites and variable combinations that had been flow-adjusted and, 
for each trend assessment period, retained those combinations for which there was 
observations for at least 90% of the sampling intervals in that period.  

• Second, for each site, variable and assessment period combination, we assessed the 
seasonality of observations using the Kruskal Wallis test. Where there was a 
statistically significant difference in the observations grouped by month (Kruskal Wallis 
test α ≤ 0.05), we categorised the data as seasonal.  

• Third, for each site, variable and assessment period combination we calculated the 
trend direction (D) and confidence in this evaluation (C) using either the Seasonal 
Kendall statistic or the Mann–Kendall statistic; depending on whether the data were 
seasonal or non-seasonal, respectively (Snelder et al. 2022).  

• Fourth, for each site, variable and assessment period combination we calculated the 
rate of change using the Seasonal Sen slope or Sen slope, depending on whether the 
data were seasonal or non-seasonal, respectively (Snelder et al. 2021a). Sen slopes 
were expressed as annual values and where appropriate, were expressed as relative 
annual Sen slopes by dividing by the median value of the observations. Confidence in 
the assessed rates of change were expressed as the 90% confidence interval of the 
Sen slope.  

The impact of choices made in the flow-adjustment process on the evaluated trends were 
assessed by comparing the two sets of flow adjusted trends for the 2011 – 2020 assessment 
period. The trends assessed from the raw data (i.e., not flow-adjusted) were also compared 
to the flow-adjusted trends that were based on models selected independently by the expert 
to assess the impact of flow-adjustment on the trend assessments.  

Trend assessment results were compared graphically using scatter plots of confidence the 
trend direction was decreasing and Sen slopes. Confidence the trend direction was 
decreasing6 was calculated from the assessed confidence in trend direction as: 

 
6 For all 10 variables shown in Table 2, other than clarity, decreasing trends indicated ‘improving’ water quality. Decreasing 
clarity trends indicate ‘degradation’. 
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𝐶𝐶𝑑𝑑 =  �
𝐶𝐶            𝑖𝑖𝑖𝑖 𝐷𝐷 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 
1 − 𝐶𝐶   𝑖𝑖𝑖𝑖 𝐷𝐷 =  𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷   

In graphical reporting of some trend assessments in this report, we express 𝐶𝐶𝑑𝑑    categorically 
using the same simplified classification system (outlined in Table 3) used by Land Air Water 
Aotearoa (LAWA7):  

Table 3. Level of confidence categories used to convey confidence trend direction was 
decreasing. 

Categorical level of confidence the trend was 
decreasing 

Range in 𝐶𝐶𝑑𝑑 

Very likely 0.90 – 1.0 

Likely 0.67 – 0.90 

As likely as not 0.33 – 0.67 

Unlikely 0.10 - 0.33 

Very unlikely 0 – 0.1 

4.6 Alternative models of the relationships between water quality 
observations, time and flow 

The methods for describing observation – flow relationships and trends (i.e., observation – 
time relationships) described above make simplifying assumptions. While these methods are 
accepted practice, the impact of these simplifications need to be kept in mind when the outputs 
are used in decision-making. Three of the most obvious simplifications are: 

1. the models fitted to the observation – flow data for each variable-site combination 
represent a bivariate characterisation of an assumed general water quality-flow 
relationship that remains equally applicable throughout the period of record regardless 
of season or antecedent flow conditions, 

2. the trend assessment method assumes that the seasonal pattern in the data is 
repeated annually and remains the same throughout the period of record,  

3. the trend assessment method assumes a specific (monotonic) functional form for the 
relationship between observations and time. 

The first and second simplifications imply that the mathematical shape or form of the 
observation – flow relationship remains constant over the record. If we consider that conditions 
in the catchment have changed over time and that these changes have influenced water 
quality (e.g., urbanisation, changes in land management, changes in flow regime due to 
increased water use), then this assumption may not be reasonable and may contribute to 
uncertainty in assessments made using the model.  

The third simplification implies that trend analyses can only detect monotonic (i.e., increasing 
or decreasing) trends over the time-period being assessed. This limitation will mean that cyclic 
temporal patterns and trend reversals will not be detected.   

 
7 https://www.lawa.org.nz/explore-data/auckland-region/river-quality/ 
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To provide alternative descriptions of observation – flow relationships and trends to those 
derived using the methods described above, we fitted models to selected water quality data 
at two sites in the Region using the Weighted Regression on Time, Discharge, and Season 
(WRTDS) method (Hirsch et al. 2010). The WRTDS method provides for considerable 
flexibility in representing the long-term trend, seasonal components, and discharge-related 
components of the behaviour of the water-quality variable of interest. However, this flexibility 
comes at the expense of requiring more data. Fitting a WRTDS model requires that the 
number of samples collected at the sampling site is more than 200 and the period of sample 
collection is at least 20 years. In addition, model fitting requires a complete record of daily flow 
values for the site over the entire period being modelled.  

The WRTDS method expresses concentration as a function of time, discharge, and season 
with the following form: 

𝑙𝑙𝐷𝐷�𝐶𝐶�� =  𝛽𝛽0 +  𝛽𝛽1𝑙𝑙𝐷𝐷(𝑄𝑄) + 𝛽𝛽2(𝑡𝑡𝑖𝑖) + 𝛽𝛽3𝐷𝐷𝑖𝑖𝐷𝐷(2𝜋𝜋𝑡𝑡) + 𝛽𝛽4𝐷𝐷𝑐𝑐𝐷𝐷(2𝜋𝜋𝑡𝑡) + 𝜀𝜀 

where, �̂�𝐶 is the predicted concentration of the water quality variable, 𝑄𝑄 is the flow rate, the 𝛽𝛽 
values are fitted parameters, 𝑡𝑡 is the time in years and 𝜀𝜀 is the unexplained variation. The 
functional form is linear in t, linear in ln(Q), and sinusoidal on an annual period (i.e., season). 
However, the method of fitting the model means that the parameter values are not constant 
throughout the entire domain of the data but vary over the explanatory variable space defined 
by 𝑄𝑄 and 𝑡𝑡. This is achieved by weighting the observations based on their relevance to the 
point in the explanatory variable space being considered (referred to by Hirsch et al. 2010 as 
an estimation point 𝑄𝑄0, 𝑇𝑇0). Thus, observations that are close to 𝑄𝑄0, 𝑇𝑇0 have a strong influence 
on the parameter values at that point in the explanatory variable space and the influence 
decreases the further the observation is from the estimation point. This approach has the 
following advantages over the methods described above: 

1. The observation – flow relationship is allowed to change smoothly over time.   

2. The trend component is not constrained to be any particular functional form and is 
allowed to change smoothly over time.  

3. There is no assumption that the seasonal pattern repeats but rather the shape of the 
seasonal pattern is allowed to change smoothly over time.  

These advantages mean that a WRTDS model can detect and fit both long term (secular) 
trend, short term fluctuations, as well as cyclic seasonal variability that evolves over time. 
Collectively this allows for more realistic representation of how water quality changes and 
increases the potential to understand the drivers of change. 

A WRTDS model includes a ‘‘flow-normalisation’’ procedure that has a similar motivation to 
flow-adjustment; to remove the association between water quality and flow regime variation 
that happen to have occurred during the monitoring period and thereby describe the water 
quality outcome that would have occurred under “average” flow regime. The weighted 
regression approach to fitting a WRTDS model means “flow-normalised” predictions are not 
simply adjustments for instantaneous flows but account for flow regime variability in water 
quality at longer timescales.  

The performance of a fitted WRTDS model is assessed using “leave-one-out cross validation” 
(Hirsch and De Cicco 2015). This procedure leaves one observation out of the fitting dataset, 
fits a model to the remaining observations and uses that model to estimate the concentration 
for the left-out observation. This step is repeated for all observations in the dataset producing 
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a set of independent predictions for each observation. These independent predictions can be 
used to quantify various measures of model performance (Hirsch and De Cicco 2015). In this 
study, we fitted a linear regression of the observations against the predictions and used the 
R2 value of this regression to describe the performance of the model. We note that WRTDS 
can also be used to assess trends by assessing the magnitude and significance of differences 
in predicted concentrations between dates of interest (Hirsch et al. 2015). However, we did 
not make use of this capability of WRTDS in this study. 

We fitted WRTDS models to the two sites with the longest and most consistent monitoring 
records in the Region: Hoteo River (NIWA) and Rangitopuni River (NIWA). We fitted models 
to four relevant water quality variables (NNN, DRP, NH4N, and CLAR) for which there was a 
continuous record of monthly observations from 1989 to 2020 (inclusive). These assessments 
used measured water clarity rather than calculated from turbidity (see Table 2). Note that we 
also assessed rolling 5- and 10-year trends for these site variable combinations as described 
in Section 4.5. 

We produced several types of graphical output from these models and examined these to 
assess whether: 

• the modelled evolution of water quality state indicates a combination of long term 
(secular) trend and short-term fluctuations? 

• the modelled observation –flow relationships change over time? 

• the modelled observation –flow relationships differ between seasons?  

In addition, we examined whether short term fluctuations were reduced when the model was 
used to generate flow-normalised concentration predictions and whether assessments of 
water quality state made using the monitoring data were consistent with the flow normalised 
predictions made by the WRTDS models 
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5 Results 

5.1 State assessment 
Assessments of current state for attributes considered here for the five-year period ending 
2020 and the precision of these estimates expressed as 95% confidence intervals are shown 
Figure 2 to Figure 5. Supplementary data with the results of trend analyses pertaining to rolling 
5-year state assessment periods between 2013 and 2020 are provided in WhatFile.xlsx.  

The width of the confidence intervals, compared to the difference between adjacent NOF 
attribute band thresholds, differed by variable and statistic. For some variables and statistic 
combinations, the width of the confidence intervals was small compared to the difference 
between adjacent NOF band thresholds. For example, for the nitrate median metric, the 95% 
confidence interval was entirely contained within the A Band for most sites (Figure 2). In 
contrast, for DRP 95th percentile, the 95% confidence interval often extended over two, three 
or even four bands (Figure 3). Other than for pH adjusted ammonia and nitrate (Figure 2), at 
most sites, the 95% confidence intervals for most combinations of statistics and variables, 
extended over more than one NOF band.  
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Figure 2. Attribute state of pH adjusted ammonia and nitrate concentrations for the 2016-
2020 period. The precision of these assessments is indicated by the width 95% confidence 
intervals. Lettered horizontal lines denote the NOF attribute band thresholds. The red lines 
are reminders that the NBL for these attributes are the B/C threshold and are high 
concentrations in contrast to low values for Clarity in Figure 3. 
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Figure 3. Attribute state of DRP concentrations and clarity for the 2016-2020 period.  The 
precision of these assessments is indicated by the width 95% confidence intervals. Lettered 
horizontal lines denote the NOF attribute band thresholds. The red lines are reminders that 
the NBL for Clarity is the C/D threshold, which is a is a low value. 
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Figure 4. Attribute state of E. coli for the 2016-2020 period. Note log-10 scale for the Count 
attributes.  The precision of these assessments is indicated by the width 95% confidence 
intervals. Lettered horizontal lines denote the NOF attribute band thresholds. Where data are 
not shown there was insufficient to assess state.  
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Figure 5. Attribute state of Copper and Zinc concentrations for the 2016-2020 period. The 
precision of these assessments indicated by the width 95% confidence intervals. Lettered 
horizontal lines denote the proposed regional attribute band thresholds (Gadd et al. 2019). 
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5.2 Variability of flow regimes  
At all 15 sites, flow regimes differed between assessment periods and were different to the 
long-term flow regime (Figure 6). At many sites, mean flows in the four assessment periods 
were higher than the long-term flow regime between approximately February and May and 
flows between approximately September and December were lower than the long-term flow 
regime.  However, patterns of differences between the four assessment periods and the long-
term flow regime varied between sites. For example, mean flows in the four assessment 
periods were lower than the long-term flow regime between approximately February and May 
for the Vaughan Stream, West Hoe Stream and Kaukapakapa River. There were also marked 
differences in flow regimes between assessment periods within sites. For example, at many 
sites, mean flows were higher in September for the assessment period ending 2017 than other 
assessment periods and this assessment period was generally associated with lower flows 
than other assessment periods between approximately January and May (Figure 6). Overall, 
the plots indicate that there is considerable variability in mean monthly flows between 
assessment periods. 
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Figure 6. Flow regimes in assessment periods and the long-term flow regime at each site.  The plotted data represents the mean flows in each 
month for the four assessment periods and the over the entire flow record for the site (see Table 8 for length of record at each site). 
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5.3 Representation of instantaneous flow by water quality observations 

5.3.1 Graphical representation of flows and observations 
Figure 7 is an example flow timeseries (hydrograph) for the Oteha Stream between 2013 and 
2021 with the water quality observations super-imposed. Most observations occur at low flows 
but some represent higher flows, especially between 2019 and 2020. Hydrographs for all the 
sites are provided in Appendix B, Figure 32. 

 

Figure 7. Oteha Stream hydrograph based on mean daily flow (black line) and superimposed 
observation-dates (maroon dots). 

The flow distribution curve (FDC) for Oteha Stream between 2013 and 2020 is shown in Figure 
8 with the corresponding water quality observations superimposed. For the Oteha Stream site, 
observations generally occurred across the flow range but 83% and 41% of the observations 
occur at flows that are lower than the mean and median flows; respectively. Therefore, a 
relatively small proportion of the observations represent high flows (i.e., > mean flow). 
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Figure 8. Oteha Stream flow duration curve (black line) with observation-date flows (maroon 
crosses). Note that the Y-axis has also been log transformed to improve the discrimination of 
flow differences. 

Figure 9 shows FDCs with overplotted water quality observations for each of the sites for the 
2013 to 2020 period. These plots indicate that there is between-site variation in how well the 
water quality observations represent the full distribution of flows. Some sites (e.g., Opanuku 
Stream) have observation-date flows covering most of the flow distribution. Many of the sites 
do not have observations at high flows as indicated by the exposed (black line) at the high 
flow (i.e., left-hand side) of the FDC.  
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Figure 9. Flow duration curves for each site for the 2013 to 2020 period. The black lines 
indicate the flows and the corresponding water quality observations are shown as maroon 
crosses. Note the log scale on the y (flow) axes.  
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5.3.2 Assessment of water-quality-observation-date flow distributions 
Figure 10 shows FDCs for the Oteha Stream for 5-year assessment periods between 2013 
and 2020 with the corresponding water quality observations super-imposed. For each 
assessment period, the water quality observations generally represent most of the flow 
distribution.  

Table 4 lists the percentage of flow range and volume represented by the observations for 
each site and 5-year assessment period. On average, flows on water quality observation-
dates in the five-year assessment periods represented 96% of the range of flows in the period. 
Water quality observation-dates best represented the flow range in the 2013 to 2017 period 
when, on average observations represented 97% of the flow range. Several sites had 5-year 
periods when observations represented 99% of the flow range. The least representative water 
quality observations were for West Hoe Stream for the 2014 to 2018 and 2015 to 2019 periods 
when observations represented only 91% of the flow range. 

On average, 76% of the stream flow volume is within the observation-date flow range (Table 
4). This is lower than the proportion of the flow range that is represented by the observations 
because the volume attributable to a given range of flows is equal to the area under the FDC 
that pertains to that range. Therefore, the high-flows that are not represented by the 
observations, account for a disproportionately large amount of total volume of water passing 
a flow station. Water quality observation-dates best represented the flow volume for the 2016 
to 2020 period when 78% of the volume was represented by observations. The least 
representative water quality observations were for 2014 to 2019 when only 63% of the flow 
volume was represented by observations. Note that the worst representative period from a 
volume perspective can be different to the worst from a time perspective if the missing high 
flows from each period are of different magnitudes. 
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Figure 10. Oteha Stream flow duration curves for each 5-year period. The black lines indicate 
the flows and the corresponding water quality observations are shown as maroon crosses.  
Note the log scale on the y (flow) axes. 



 

 Page 48 of 100 

Table 4. Proportion of time or volume of streamflow that was represented by water quality 
observations for rolling 5-year periods between 2013 and 2020. Periods without at least 90 
% of flows (>1642 days) or samples (> 53) are omitted 

Site 
2013 to 2017 2014 to 2018 2015 to 2019 2016 to 2020 

Time Vol Time Vol Time Vol Time Vol 

Average of all sites 97 76 96 73 96 77 96 78 

Hoteo River (45703) 97 71 97 77 98 82 95 81 

Mahurangi River (Warkworth) (6804) 94 61 95 59 - - - - 

West Hoe Stream (7206) 95 71 91 63 91 67 93 67 

Kaukapakapa River (45415) 97 73 98 74 95 62 93 61 

Vaughan Stream (7506) 95 58 - - - - - - 

Lucas Creek (7830) 97 72 92 50 96 65 98 73 

Oteha River (7811) 97 77 93 54 97 71 97 82 

Rangitopuni River (7805) 97 70 99 82 99 82 99 83 

Opanuku Stream (7904) 99 93 99 92 99 94 99 93 

Otara Creek (East) (8205) 99 91 98 85 98 86 97 85 

Puhinui Stream (43807) 97 78 94 74 96 75 97 76 

Wairoa River (8516) 98 82 97 80 96 81 98 82 

Papakura Stream (Lower) (43856) 99 87 98 81 98 82 99 82 

Ngakoroa Stream (43829) 96 79 95 76 95 75 94 72 

Waitangi Stream (43601) 96 76 96 75 95 75 95 73 

 

The results of the Kolmogorov-Smirnov tests of differences between the flow distributions (i.e., 
FDCs) pertaining to state assessment periods to the corresponding distribution of flows 
associated with observations are shown in Table 5. These tests indicate that in all cases the 
p-value is greater than 0.05, which conservatively indicates that the null hypothesis is not 
rejected (because any autocorrelation in the data leads to under-estimation of the p-value). 
The conclusion from this is that the distribution of flows on sampling occasions are always 
consistent with the full flow distribution and therefore the samples are not biased with respect 
to flow.  
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Table 5. Kolmogorov-Smirnov statistics comparing five-year observation-date flow 
distributions to the FDC for the whole the assessment period.  

Site 2017 2018 2019 2020 

Hoteo River (45703) 0.08 0.07 0.06 0.06 

Mahurangi River (Warkworth) (6804) 0.10 0.11 0.08 0.10 

West Hoe Stream (7206) 0.08 0.09 0.10 0.09 

Kaukapakapa River (45415) 0.13 0.12 0.09 0.09 

Vaughan Stream (7506) 0.07 0.09 0.09 0.08 

Lucas Creek (7830) 0.08 0.09 0.09 0.09 

Oteha River (7811) 0.11 0.10 0.13 0.11 

Rangitopuni River (7805) 0.06 0.07 0.07 0.05 

Opanuku Stream (7904) 0.16 0.14 0.09 0.09 

Otara Creek (East) (8205) 0.10 0.09 0.12 0.11 

Puhinui Stream (43807) 0.08 0.10 0.10 0.09 

Wairoa River (8516) 0.09 0.07 0.06 0.07 

Papakura Stream (Lower) (43856) 0.06 0.07 0.04 0.07 

Ngakoroa Stream (43829) 0.06 0.06 0.06 0.06 

Waitangi Stream (43601) 0.06 0.07 0.06 0.06 

 

5.4 Relationships between water quality observations and flow 
The 10 water quality variables (Table 2) were generally monotonically associated with 
instantaneous flow as indicated by Kendall’s 𝜏𝜏 (Figure 11). Observations of forms of nitrogen 
(NNN, and TN) were most strongly associated with instantaneous flow and DRP was least 
associated. Observations could be positively or negatively associated with flow but were 
predominantly positive for concentrations and negative for CLAR. The associations reflect 
generally increasing concentrations with flow. For CLAR, the association is reversed because 
visual clarity decreases with increasing concentrations of particulate material in the water 
column.  
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Figure 11. Box and whisker plots showing the distributions of Kendall’s 𝜏𝜏 measuring the 
correlation between observations and instantaneous flow at each site by variable. The black 
horizontal line in each box indicates the median of site Kendall’s 𝜏𝜏, and the box indicates the 
inter-quartile range (IQR). Whiskers extend from the box to the largest (or smallest) values no 
more than 1.5*IQR from the box. Data beyond the whiskers are shown as black circles. The 
horizontal red line indicates a Kendall’s 𝜏𝜏 value of zero.  

 

Of the 202 site-variable combinations that had a sufficient number of observations for flow-
adjustment, 81 combinations were considered objectively robust (i.e., had observation – 
instantaneous flow models with r2 values greater than 0.2 and p values < 0.01). These 81 
combinations are detailed in Appendix D Table 9, and were investigated further.  

Flow and water quality data from the Wairoa River (site 8516) are used below as an example 
of modelled relationships between water quality and flow. Plots of instantaneous flow - NNN 
concentration relationship for the Wairoa River are shown in Figure 12. Observations are 
predominantly at low flows with few observations at higher flows (e.g., > 10 m3/s). Note that a 
log (base 10) transformation of the flow axis spreads the sample values more evenly across 
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the range of flows and displays the relationship between concentration and flow in a more 
linear fashion (Figure 12, right hand side). For the remainder of plots presented in this section, 
the flow axes are log transformed.  

 

Figure 12. Plots of NNN vs flow for Wairoa River with linear scale for flow (left hand side) and 
log (base 10) transformed flow (right hand side). 

 

The r2 values for each of the eight potential instantaneous flow - observation models and 
variable (Table 2) combinations for the Wairoa River site are shown Table 6. Some of the 
models pertaining to ZN and two DRP models had r2< 20% and p-values > of 0.01. This 
indicates that we consider that there is insufficient statistical support for the instantaneous flow 
- observation relationships represented by these models.  

Table 6. Fitted r2 for instantaneous flow - observation for the Wairoa River site. Model fits 
with p < 0.01 are indicated by bold text. 

Fitting models 
CLAR 

E. 
coli NH4N DIN NNN DRP TN TP CU ZN 

GAM 0.65 0.61 0.11 0.61 0.61 0.03 0.67 0.19 0.2 0.03 

GAM-Log 0.65 0.74 0.11 0.61 0.6 0.03 0.67 0.19 0.2 0 

LOESS 0.7 0.65 0.6 0.11 0.62 0.61 0.03 0.67 0.19 0.2 0.02 

LOESS 0.7-Log 0.65 0.75 0.11 0.61 0.61 0.03 0.66 0.19 0.2 0 

LOESS 0.9 0.65 0.56 0.11 0.61 0.61 0.03 0.66 0.19 0.2 0.02 

LOESS 0.9-Log 0.65 0.75 0.1 0.61 0.6 0.03 0.65 0.19 0.19 0 

LinLog 0.59 0.14 0.09 0.58 0.57 0.01 0.64 0.1 0.16 0 

LogLog 0.65 0.21 0.1 0.21 0.16 0.01 0.63 0.12 0.16 0 

Figure 13 shows the eight models fitted to the NNN concentration observation - instantaneous 
flow data for Wairoa River. All models are highly significant and all but one have r2 > 60%. 
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Although the fitted relationships are reasonably similar, they deviate from each other 
appreciably at high flows. For example, the LOESS models indicate that NNN decreases at 
high flows, representing dilution. In contrast the linear models indicate continuing increases in 
NNN at high flows and the GAM models indicate a plateau occurs. The differences in these 
models would produce appreciable differences in the residual values for the high flows and 
these differences would therefore impact on the results of trend assessments. The difficulty in 
choosing the “right” model is that most are plausible but confidence in the model fits at high 
flows is low due to the limited numbers of observations and increasing variability in 
concentration at high flows.  

 

Figure 13. Fitted models representing the instantaneous flow - NNN concentration relationship 
for the Wairoa River site. 
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Figure 14 shows the observation - instantaneous flow relationships for ten water quality 
variables (Table 2) for the Wairoa site. The relationships represented by the eight fitted models 
are represented as lines in Figure 14. The plots in Figure 14 indicate that DRP and ZN have 
no obvious relationship with flow (as also indicated by Table 6). For the remaining variables, 
most of the fitted models appear to be plausible but there are appreciable differences in these 
models at high flows that would impact on the results of trend assessments. As noted above 
for the NNN concentration - instantaneous flow model, the difficulty in choosing the “most 
suitable” model is that most are plausible but confidence in the model fits at high flows is low 
due to the limited numbers of observations and increasing variability in concentration at high 
flows.  
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Figure 14. Fitted models representing the observation - instantaneous flow relationships for 
10 water quality variables for the Wairoa River site.  

Figure 15 summarises the type of model that was identified as the most suitable model for 
flow-adjustment by expert opinion for each of the 81 site-variable combinations that were 
considered objectively robust and investigated further. Appendix D Table 9 provides a 
complete list of the models chosen by expert opinion. The plots used for the subjective model 
selection are provided in a supplementary information file: ReasonableSiteVariablePlots.pdf.  



 

 Page 55 of 100 

 

Figure 15. Summary of the choices of model used to represent the observation -instantaneous 
flow relationship for the 81 site-variable combinations that were considered objectively robust.  
The bar chart indicates the number of sites for which the differing types of models were 
selected by the expert. 

5.4.1 Flow-adjustment 
Figure 16 shows the effect of flow-adjustment based on the Linear-Log (LinLog) model for TN 
observations for the Wairoa River site. The effect of flow-adjustment on the data is visible as 
the flow-adjusted values are no longer increasing with flow.  
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Figure 16. Effect of flow-adjustment of TN concentrations for the Wairoa River site.  The right 
hand side shows the raw observation – instantaneous flow relationship and the left hand side 
shows the relationship after flow-adjustment using LinLog model. The red horizontal line 
indicates the median of the raw values.  

Figure 17 shows the time series of NNN observations for the Wairoa River sites as measured 
(i.e., raw values) and after flow-adjustment based on two concentration – instantaneous flow 
models. Figure 12 shows the concentration –- instantaneous flow model that was used to 
perform the flow-adjustment seen in Figure 17. Concentrations are more variable in the early 
part of the time series (i.e., prior to approximately 2010) compared with the later years, but the 
flow-adjusted concentrations are less variable that the raw data, which is consistent with one 
of the aims of flow-adjustment.  

Figure 17 indicates that overall, there are only small differences between the two sets of flow-
adjusted observations. However, these differences are more obvious for high flow 
observations where the two contrasted models (LinLog and LOESS 0.9) most deviate from 
each other (Figure 12 note red points indicate flows > 8 m3/s). The red points indicate that the 
magnitudes of the flow-adjusted data differ between the two flow-adjustment methods. This 
means these high flow observations, in particular, will contribute differently to the trend 
analysis and the trend results can be expected to be differ between the two sets of flow-
adjusted data.  
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Figure 17. Time series of NNN at Wairoa River as observed and after flow-adjustment.  Note 
that the red points indicate observations that were associated with flows > 8 m3/s.  

5.5 Trend assessments 

5.5.1 Comparison of flow-adjusted and raw trends for the 2011 – 2020 assessment 
period 

The impact of the flow-adjustment, where this was considered appropriate based on the 
criteria set out in Section 4.4, on the trend assessment is presented in Figure 18. Flow-
adjusted trend rates differed from their raw counterparts as indicated by the scatter of points 
away from the one-to-one line in Figure 18. There were also differences in the assignment of 
sites to categories indicating confidence the trend was decreasing (Figure 19). Figure 18 and 
Figure 19 indicate that direction of assessed trends can differ between trends based on raw 
and flow-adjusted data. For example, for TN, a site was categorised as “Very likely” decreasing 
for the assessment based on the raw observations and “Unlikely” decreasing (and therefore 
“Likely” increasing) for the assessment based on the flow-adjusted observations (Figure 19). 
These differences are expected outcomes based on the purpose of flow-adjustment. 



 

 Page 58 of 100 

 

Figure 18. Annual relative Sen slope for trends (2011-2020) calculated from raw and flow-
adjusted observations. Each panel represents a different variable. The number in parentheses 
in the header of each panel indicates the number of sites represented for each water quality 
variable. Error bars indicate the 90% confidence interval for the annual relative Sen slope. The 
1:1 line is shown in red and Sen slopes of zero are shown as black lines.  
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Figure 19. Comparison of confidence that trends (2011 – 2020) were decreasing for trends 
calculated from raw and flow-adjusted observations. The values in the cells indicate the 
proportion of sites with the indicated combination of confidence categories. Each panel 
represents a different variable. The number in parentheses in the header of each panel 
indicates the number of sites represented for each water quality variable. Note that the 
diagonal line of cells rising from left to right indicate agreement in the categories and cells 
away from this line indicate disagreement. 
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The impact of the flow-adjustment method (i.e., the choice of model used to represent the 
instantaneous flow – observation relationship) on the assessed trend rate (expressed as an 
annual relative Sen slope) is shown in Figure 20. The deviation of the points from the one-to-
one line in these plots indicate that assessments of trend rate are sensitive to the method of 
flow-adjustment. The deviation of the two sets of flow-adjusted trends is less than that of the 
raw versus flow-adjusted trends but is nevertheless appreciable (i.e., compare Figure 20 with 
Figure 18). This indicates that choices made in the flow-adjustment process impact on the 
evaluated trends.  

Differences in flow-adjustment methods also produced disagreements in the assignment of 
sites to categories expressing confidence in trend direction (Figure 21). For example, for DIN, 
two sites that were categorised as “Unlikely” decreasing for the assessment based on the 
LOESS 0.9 flow-adjusted observations were categorised “As likely as not” and “Very unlikely” 
based on the expert-based flow-adjusted observations (Figure 19). The disagreements in the 
assignment of sites to confidence categories produced by comparing trends assessed using 
different flow-adjustment methods were not as large as those produced by comparing raw and 
flow-adjusted trends (i.e., compare Figure 19 with Figure 21). However, the differences in 
confidence categories produced by comparing trends assessed using different flow-
adjustment methods were appreciable indicating that choices made in the flow-adjustment 
process impact of on the evaluated trends. 
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Figure 20. Annual relative Sen slope for trends calculated from flow-adjustment of 
observations based on expert-selected model versus using a default LOESS 0.9 model. Each 
panel represents a different variable. The number in parentheses in the header of each panel 
indicates the number of sites represented for each water quality variable. Error bars indicate 
the 90% confidence interval for the annual relative Sen slope. The 1:1 line is shown in red and 
Sen slopes of zero are shown as black lines.  



 

 Page 62 of 100 

 

Figure 21. Comparison of confidence that trends were decreasing for trends calculated from 
using expert-based flow-adjustment and using LOESS-based flow-adjustment. The values in 
the cells indicate the proportion of sites with the indicated combination of confidence 
categories. Each panel represents a different variable. The number in parentheses in the 
header of each panel indicates the number of sites represented for each water quality variable. 
Note that the diagonal line of cells rising from left to right indicate agreement in the categories 
and cells away from this line indicate disagreement. 
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5.5.2 Trend variability over time 
Raw and flow-adjusted trend assessments of rolling time-periods of 5- 10- and 20-year 
duration for the Hoteo River and Rangitopuni River sites and for CLAR, DIN, DRP and NH4N 
are shown in Figure 22 to Figure 27. For each variable, Sen slope and confidence the trend 
was decreasing (𝐶𝐶𝑑𝑑) tended to oscillate between time periods for all three durations. Within a 
variable, the magnitude of changes in Sen slopes between adjacent time periods decreased 
with increasing time window duration (Figure 22, Figure 24, Figure 26). For example, for CLAR 
at the Hoteo river site, Sen slopes varied between approximately -0.2 and 0.2 m year-1 for the 
5-year duration, -0.05 and 0.1 m year-1 for the 10-year duration and -0.02 and 0.04 m year-1 
for the 20-year duration. For the 5-year duration, there were frequent changes in the direction 
of trends between time periods that were separated by only one or two years. For example, 
for the 27 individual 5-year duration assessments of CLAR trends for the Hoteo river site, there 
were three groups of end years with “Very likely” decreasing trends that were separated by 
groups of end years with “Very unlikely” decreasing trends (Figure 23). This oscillation in trend 
over periods of approximately 5 years is also seen in the Sen slope assessment (Figure 22). 
Changes in direction of site trends were less frequent for the 10-year time-period duration 
(Figure 25) and less frequent again for the 20-year time period duration (Figure 27). 

Although there were small differences in the assessed Sen slope and confidence the trend 
was decreasing (𝐶𝐶𝑑𝑑) between the raw and flow-adjusted trends, the magnitude and frequency 
of oscillations were not appreciably different. This indicates that if the driver of the oscillations 
is hydrological processes, their effect is not removed by flow-adjustment.  
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Figure 22. Rolling 5-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites (NIWA, NWQN) for the 
period from 1990 to 2020. Each panel represents a site (columns) and a water quality variable (rows). The points indicate the raw and flow-
adjusted Sen slopes and the error bars indicate the 90% confidence intervals. The red dotted line indicates a Sen slope zero. The y-axis units 
are rates of change of the units for each variable shown in Table 2 per year. The x-axis indicates the end year for each trend assessment 
period. Sen slope values could not be calculated for some trend periods because there was insufficient variability in the water quality data to 
undertake the trend analysis.   
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Figure 23. Rolling 5-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites for the 
period from 1990 to 2020. Confidence (𝐶𝐶𝑑𝑑) is indicated using the categories defined in Table 3. The x-axis indicates the end year for each 
trend assessment period. Confidence values could not be calculated for some trend periods because there was insufficient variability in the 
water quality data to undertake the trend analysis.   
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Figure 24. Rolling 10-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 
to 2020. Each panel represents a site (columns) and a water quality variable (rows). The points indicate the raw and flow-adjusted Sen slopes 
and the error bars indicate the 90% confidence intervals. The red dotted line indicates a Sen slope zero. The y-axis units are rates of change 
of the units for each variable shown in Table 2 per year. The x-axis indicates the end year for each trend assessment period. 



 

 Page 67 of 100 

 

Figure 25. Rolling 10-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites (NIWA, 
NWQN) for the period from 1990 to 2020. Confidence (𝐶𝐶𝑑𝑑) is indicated using the categories defined in Table 3. The x-axis indicates the end 
year for each trend assessment period. 
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Figure 26. Rolling 20-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 
to 2020. Each panel represents a site (columns) and a water quality variable (rows). The points indicate the raw and flow-adjusted Sen slopes 
and the error bars indicate the 90% confidence intervals. The red dotted line indicates a Sen slope zero. The y-axis units are rates of change 
of the units for each variable shown in Table 2 per year. The x-axis indicates the end year for each trend assessment period. 



 

 Page 69 of 100 

 

Figure 27. Rolling 20-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites for the 
period from 1990 to 2020. Confidence (𝐶𝐶𝑑𝑑) is indicated using the categories defined in Table 3. The x-axis indicates the end year for each 
trend assessment period. 
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5.6 WRTDS models 
The weighted regression on time, discharge, and season (WRTDS) models of CLAR, NNN, 
DRP and NH4N for the Hoteo and Rangitopuni monitoring sites had R2 values between 0.5 
and 0.83. Based on the evaluation criteria of Moriasi et al. (2015) water quality models with R2 
values of >0.3 are satisfactory, >0.6 are good and >0.7 are very good. Therefore, all models 
were at least satisfactory, and some were very good (Table 7).  

Table 7. Cross validated model R2 values for WRTDS models of selected variables for the 
Hoteo and Rangitopuni monitoring sites.  

Site Variable R2 

Hoteo 

CLAR 0.83 
NNN 0.77 
DRP 0.50 

NH4N 0.70 

Rangitopuni 

CLAR 0.79 
NNN 0.83 
DRP 0.53 

NH4N 0.52 
 

The predicted daily values of the four water quality variables at both sites are shown in Figure 
28 along with the observations. The blue line indicates the seasonal rolling mean (i.e., moving 
average at the seasonal timescale), which smooths some of the daily variability. The seasonal 
rolling mean highlights two features of the predictions. First, there is generally a strong 
seasonal pattern in the data, and the amplitude of this pattern is often variable over time. For 
example, CLAR at the Hoteo site had a large range in 2020 compared to 2018. Second, mean 
concentrations are highly variable at the annual time scale and there are fluctuations in the 
mean values of variables at the interannual time scale. For example, NH4N at the Hoteo site 
was generally lower in the period from 2004 to 2007 compared to the earlier period 2001 to 
2003 and the later period from 2008 to 2010 (Figure 28).  
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Figure 28. Concentrations of CLAR, DIN, DRP and NH4N for the Hoteo and Rangitopuni monitoring sites predicted by the WRTDS models. 
The grey lines indicate daily predictions, and the blue line indicates the predicted seasonal rolling mean value. The red dots indicate the 
observations. The y-axis indicates units of concentration for DIN, DRP and NH4N and distance for CLAR.  
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Examples of the observation – flow relationships fitted by WRTDS for different dates are 
shown in Figure 29. These plots indicate that the WRTDS model has detected and fitted 
appreciably differing observation – flow relationships for different dates for some site and 
variable combinations. For example, Figure 29 shows that NNN concentrations at the Hoteo 
site were consistently higher at a given discharge in 2000 compared to the later years (2009 
and 2019).  

 

Figure 29. Examples of observation – flow relationships fitted by the WRTDS models for a 
fixed day in three different years.  Note that y-axis indicates units of concentration for DIN, 
DRP and NH4N and distance for CLAR. 

 

Examples of the observation – flow relationships fitted by WRTDS for different seasons within 
the same year are shown in Figure 30. These plots indicate that the WRTDS model has 
detected and fitted appreciably differing observation – flow relationships for different seasons 
for some site and variable combinations. For example, Figure 30 shows that NNN 
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concentrations were consistently higher at a given discharge in winter (indicated by 2019-06-
01) compared to spring and summer (indicated by 2019-10-01 and 2019-02-01, respectively).  

 

Figure 30. Examples of fitted observation – flow relationships on different days, representing 
seasons (summer (red), winter (green) and spring (blue)), in the same year (2019).  

 

Comparisons of observed and predicted water quality state (as median values and the 
precision of those estimates) for rolling five-year periods ending 2020 are shown for the four 
water quality variables at both sites in Figure 31. The plots show the rolling 5-year median 
values based on the daily values predicted by the WRTDS model and the rolling 5-year median 
flow standardised values (also predicted by the WRTDS model). The predictions obtained 
from the WRTDS models highlight three features of the data. First, most site and variable 
combinations exhibit secular (i.e., long term) trends through the whole record. For example, 
over the whole period between 1994 and 2020, CLAR increased, and NNN and DRP 
decreased at both sites (i.e., improving trends across these variables). The secular trends 
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indicated by the WRTDS models are consistent with the trend assessments for the 20-years 
duration reported in Section 5.2.2. For example, for most 20-year trend assessment periods, 
there were increasing trends for CLAR, and decreasing trends for DIN and DRP (Figure 26 
and Figure 27). 

The second feature of the data highlighted by the WRTDS models is that the predicted median 
values oscillated through the period. For example, predicted median NH4N at the Hoteo site 
was lower in the period from 2001 to 2003 compared to the period 2004 to 2006 and was 
again lower in the period from 2009 to 2011. The oscillations in state indicated by the WRTDS 
models are consistent with the trend assessments for the 5-years duration reported in Section 
5.5.2. For example, for the 5-year trend assessment periods, trend rates and directions for all 
four variables oscillated with an approximate duration of a full cycle being six to seven years 
(Figure 22 and Figure 23). 

The third feature of the data highlighted by the WRTDS models is that flow normalised median 
values (blue lines on Figure 31) exhibit appreciably less oscillation than the medians derived 
from the predicted values and the median values calculated from the water quality 
observations. For example, while there was a secular decreasing trend over the whole period 
for DRP at the Hoteo site, values were higher in succeeding years on several occasions 
through the period. For the Rangitopuni site, predicted DRP and the calculated DRP median 
face values also oscillated appreciably so that state changed between the NOF D band and 
C band several times over the period of record. In contrast, at both sites and for all variables 
the flow normalised median values exhibited much less oscillation and tended to indicate 
consistent trends through the whole record. This indicates that the oscillations are explained 
by flow regime variation and that the WRTDS flow normalisation procedure is effective in 
removing their effect. It is noted that oscillations in the rolling trends are shown in the preceding 
analysis (e.g., Figure 22, Figure 24) even for the flow-adjusted trends. This indicates that that 
flow normalisation by WRTDS is reasonably able to account for the impact of flow regime 
variation whereas flow-adjustment of instantaneous flow does not. 

Finally, the fourth feature of the data highlighted by the WRTDS models is that the rolling 5-
year median values calcuated from the flow normalised WRTDS predictions were sometimes 
outside of the precision of the medians calculated from the monitoring data (Figure 31). This 
indicates water quality state, as represented by the monitoring data, is appreciably associated 
with flow regime variation. Further, this indicates that water quality state assessments 
produced from different assessment periods may differ in association with flow regime 
variation even in the absence of changes in anthropogenic pressure on water quality. In other 
words, assessments produced from monitoring data for a specific assessment period may 
indicate poorer or better or water quality for the site than that which would be obtained if the 
assessment period had represented the “average” flow regime. 
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Figure 31. Rolling five-year median values for the preceding five-year assessment period. The black lines indicate the WRTDS predicted 
median values and the blue lines are the WRTDS predicted flow normalised medians. The red dots indicate the median values of the 
observations in the preceding five-year period and the error bars indicate the associated precision as 95% confidence intervals. Note that y-
axis indicates units of concentration for NNN, DRP and NH4N and distance for CLAR. The dashed horizontal blue, green and red lines indicate 
lower thresholds for the A, B and C NOF bands. Note that both sites belong to NOF Suspended Sediment Class 2 and concentrations of NH4N 
and NNN at both sites were consistently within the A band. 
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6 Discussion 
The National Policy Statement on Freshwater Management (NPS-FM) and section 35 of the 
RMA requires AC to monitor water quality, regularly assess and report on water quality state, 
including the state of compulsory attributes identified as part of the National Objectives 
Framework (NOF), assess water quality trends, and take appropriate action in the case that 
those trends indicate degradation. In streams and rivers, these tasks are complicated because 
water quality observations are variable and are influenced by both the instantaneous flow at 
the time of observation and the preceding hydrological conditions (i.e., flow regime) at 
timescales of weeks, months and even years. Both the influence of instantaneous flow and 
the flow regime at longer time scales on water quality have implications for the assessment of 
water quality state, trends, and the attribution of trends to causes.  

In this study, we undertook a series of analyses of water quality and associated flow data at 
15 long term monitoring locations across the Auckland region. Based on the findings of those 
analyses and our experience and expertise in state and trend assessment, we make the 
following observations. 

6.1 Uncertainty in assessment of attribute state 

6.1.1 Precision of state assessments 
Assessments of water quality state are uncertain. The most obvious component of uncertainty 
is associated with sample error. Sample error can be understood as the uncertainty associated 
with an estimate of the true water quality state that is made from monitoring data (a “sample”). 
This uncertainty arises because water quality is variable over time and observations are only 
a snapshot of what actually occurred (the “true” water quality state) over the assessment 
period. The uncertainty associated with sample error can be quantified and we refer to it as 
the precision of the state assessment (Section 5.1). Limited precision means that there is 
uncertainty in assessments of state, and therefore assignment of sites to NOF bands. In the 
context of assessing attribute state, precision can be understood as the range over which we 
could expect the assessed state to vary if there had been multiple independent sets of samples 
taken.  

6.1.2 Instantaneous flow rate contributes to water quality variability 
Instantaneous flow rate was represented in this study by mean daily flows and was shown to 
be generally associated with river water quality variability and therefore the precision of state 
assessments. We showed that water quality variables are correlated with instantaneous flow 
rate (Section 5.4). If water quality assessments, including attribute states, are to describe 
characteristics of the true water quality state, in the assessment period, water quality sampling 
needs to be unbiased with respect to instantaneous flow rate. If samples are unbiased with 
respect to instantaneous flow, then over an assessment period, the range of flows sampled 
should approximate the distribution of all flows in the assessment period. For the 15 monitoring 
sites that were the focus of this study, we found that this was always true. In any five-year 
assessment period, the distribution of instantaneous flows on sample occasion was never 
significantly different to the distribution of all flows (Section 5.3.2). This means that the 
sampling was unbiased with respect to instantaneous flow. 
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6.1.3 Flow regime variability contributes to water quality variability 
Flow regime variability refers to variation in flows at longer than instantaneous (i.e., daily) 
timescales. Flow regime variability produces another aspect of uncertainty of state 
assessments that is not quantified. This uncertainty is associated with the fact that flows for 
any five-year assessment period are not a perfect representation of the long-term “average” 
flow regime (Section 5.2). From this we can infer that the flow regime can also be expected to 
vary significantly between state assessment periods (i.e., 5-year periods). State assessments 
can therefore also be expected to vary between assessment periods because of differences 
in the flow regime between those periods. We refer to this second component of uncertainty 
associated with water quality state assessments as unquantified uncertainty of type A. With 
respect to state assessment, unquantified uncertainty of type A can be understood as the 
difference in state assessments between five-year assessment periods that can be expected 
due to hydrological differences (manifested as flow regime variation) between the periods. 
This uncertainty is not readily quantified, although its existence can retrospectively be seen 
as oscillations in attribute state over time (Sections 5.5.2and 5.6 ).  

6.2 Unquantified uncertainty confounds comparisons between baseline, 
current and target attribute states 

The unquantified uncertainty of type A associated with state assessments is relevant to the 
NPS-FM requirement to publish comparisons of current and target attribute states 
(S3.30(2)(b)) and to assess whether target attribute states are being, or are likely to be, 
achieved (S3.30(2)(c)), and to assessments of trends and their causes (S3.30(2)(d)). The 
intent of these requirements is to identify changes in water quality in a timely fashion and 
understand their causes so that appropriate action can be taken if they are due to effects of 
human resource use rather than natural or unmanageable causes. However, in this study, we 
showed that water quality is strongly influenced by flow regime variation (Section 5.6). 
Therefore, both trends and state assessments pertaining to different time-periods will differ 
due to differences in flow regimes between the periods. Because flow regime variability is a 
strong drivers of water quality variability, they are a confounding factor with respect to the 
intent of the above NPS-FM requirements. We note that the influence of flow regime variability 
on water quality may be due to variation in climatically-driven processes that control the 
mobilisation, storage and transport of contaminants in catchments. However, additionally the 
influence may be exerted by anthropogenic responses to climatic variation. For example, land 
management practices might be different in wet and dry years and these differences may be 
reflected in water quality differences.  

Unquantified uncertainty of type A is also relevant to setting target attribute states because 
these are based on assessments of baseline and current state. Because flow regime variability 
is associated with oscillations in water quality state (Sections 5.5.2 and 5.6), a baseline or 
current state assessment may represent an unusually good or poor water quality for a site 
over the long run. The risk associated with this uncertainty is that baseline state assessments 
may estimate better water quality than that associated with the “average” flow regime, and this 
may result in targets that are not ambitious enough to effect change. Alternatively, the 
assessed baseline may represent better water quality than that associated with the “average” 
flow regime and targets may be set that are not achievable.  
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6.3 Uncertainty in assessment of water quality trends 

6.3.1 Flow-adjustment addresses instantaneous flow but cannot control for flow 
regime variability 

Flow conditions can be considered a “covariate” when we are interested in how water quality 
observations are changing over time. This means that flow conditions are related to the water 
quality observations, but their influence confounds identifying whether anthropogenic factors 
are involved and whether action needs to be taken. Because flow is a covariate, an accepted 
practice in trend assessment is to undertake “flow-adjustment”. Flow-adjustment attempts to 
remove the influence of instantaneous flow on the water quality observations prior to trend 
analysis. There is an important distinction between instantaneous flow rate and flow regime 
variability at longer time scales. Flow-adjustment uses a statistical process to control for 
instantaneous flow rate on water quality observations (Section 5.4.1). However, this does not 
account for all the influence of flow regime variability on water quality because hydrological 
processes vary over a range of temporal scales.  

In this study we show that trend magnitude (indicated by Sen slopes) and direction (indicated 
by confidence the trend was decreasing; 𝐶𝐶𝑑𝑑) produced by rolling trend assessments oscillate 
over time (see Section 5.5.2). The magnitude and frequency of the oscillations tend to 
decrease with increasing assessment period duration due to temporal smoothing. The most 
plausible explanation for these oscillations is the influence of climatic processes. Various 
studies have shown that the El Niño Southern Oscillation climate pattern (ENSO) translates 
into a predictable variation in water quality trends (Scarsbrook et al. 2003; Snelder et al. 2021c, 
b). In this study we also showed that flow-adjustment of water quality data prior to trend 
analysis does not reduce the magnitude and frequency of the oscillations seen in results of 
rolling trend assessments (Section 5.5.2). This indicates that the influence of flow regime 
variation on water quality is not removed by flow-adjustment. Flow regime variation therefore 
remains a confounding factor when considering how to respond to degrading trends as 
required by NPS-FM (S3.30(2)(d)). 

6.3.2 Trend assessments are associated with unquantified uncertainty 
There are commonly accepted methods for fitting trend models that we employed in this study. 
A key determination from trend models is trend rate and confidence in the trend direction. 
Confidence in assessments of trend rates and direction can be understood as analogous to 
the precision of state assessments; limitations to confidence is equivalent to limitations to 
precision and is due to sample error. However, because trend analysis is based on statistical 
models, it involves simplifications, assumptions and procedural decisions. The influence of 
these simplifications, assumptions and procedural decisions are not reflected in the evaluation 
of the confidence of a trend assessment (i.e., are not quantified) but are a source of uncertainty 
that should not be overlooked.  

In the context of trend analysis, there are two sources of unquantified uncertainty. First, there 
will be differences in trend assessments between different time-periods that are associated 
with differences in the flow regimes over those periods that we refer to as unquantified 
uncertainty of type A. Type A uncertainty means that trend rate and direction indicated by an 
“up-to-date” trend assessment, for example an assessment of a short duration trend (e.g., 5 
or 10-years duration) that ends with the most recent observations, may be a response to flow 
regime variation and may be reversed in a subsequent time step. In this study, we 
demonstrated that rolling trend assessments vary considerably in trend magnitude and 
direction, even between assessment periods that are close in time. For example, rolling trend 
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assessments periods of 5 and 10 years duration that increment by one year, can go from 
“Likely” or “Very likely” decreasing to “Likely” or “Very likely” increasing when the assessment 
period is incremented by only one or two years (Section 5.5.2). The likelihood of reversal of 
short duration “up-to-date” trend means they cannot be regarded as the sole basis for making 
decisions to act. The second source of unquantified uncertainty in trend analysis arises due 
to there being other potential models that describe the trend, these may result in differences 
in the assessment, and these alternative models may be equally credible. In this study, we 
refer to this type of unquantified uncertainty as type B and demonstrated this by showing that 
there are alternative credible flow-adjustments and these produce differences in trend 
assessments (Section 5.5.1). 

The first step in flow-adjustment is to model the relationship between instantaneous flow and 
the water quality observations. In this study, we showed that this process is subjective and 
there is generally more than one plausible model of the association (Section 5.4). Furthermore, 
we demonstrated that these different flow-adjustments result in differences in trend 
assessments (see Section 5.4.1). Consequently, flow-adjustment adds to the uncertainty 
associated with trend assessment and this uncertainty is generally not quantified in the 
application of commonly accepted trend assessment methods.  

6.3.3 Trend assessments alone are not a reliable early warning mechanism 
Management of water quality would be facilitated by early warning of degradation and whether 
specific anthropogenic activities are causing the degradation. This suggests that trend 
assessments based on short assessment periods (e.g., 5-years duration) ending with the most 
recent observations are desirable because these describe changes that have occurred in the 
recent past. However, rolling trend assessments show that the shorter the time-period, the 
greater the likelihood of reversal of the assessed trend at the subsequent trend assessment 
(see Section 5.5.2). We also showed that the tendency for water quality state to oscillate is 
strongly decreased when flow regime variation is accounted for (flow normalised WRTDS 
predictions, Section 5.6 ). This indicates that short term trends are likely to be strongly 
influenced by flow regime variation, even when these trends are flow-adjusted. Therefore, on 
their own, short term trend assessments are not a reliable early warning mechanism.  

More generally, a trend assessment produces no information regarding the causes of the 
observed trend. The effects of hydrological variation may amplify or counteract the effects of 
other drivers of water quality trends. Therefore, there is a risk that reporting water quality 
trends without robust attempts to identify the causes may lead to speculative attribution of the 
trends to anthropogenic drivers. This may then lead to management actions to mitigate 
anthropogenic drivers that are ineffective in reversing degrading trends, or complacency that 
water quality is being protected when in fact anthropogenic degradation has been 
counteracted by effects of hydrological variation.  

6.4 Models are needed to understand water quality variation 
Temporal variation in water quality is complex. Our ability to understand and describe this 
variation is increasing as data records increase in duration, and our ability to model the 
complex relationships improves. In this study we demonstrated WRTDS as a new approach 
to modelling the evolution of water quality over time. The WRTDS models indicated that 
interannual oscillations in water quality are strongly associated with flow regime variation 
because flow normalised predictions produced by WRTDS were considerably smoother than 
the non-normalised counterparts (Section 5.6). These results are consistent with the 
established link between the ENSO climate pattern and variation in water quality trends 
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(Snelder et al. 2021c, b). Importantly, because WRTDS can remove the influence of flow 
regime variation on water quality, it is likely to be more useful than traditional flow-adjusted 
trend analysis when assessments aim to determine whether anthropogenic pressure or 
actions are changing water quality (e.g., Choquette et al. 2019; Murphy 2020). 

The analyses undertaken by this study are examples of the need to use models, of increasing 
complexity, to make sense of water quality data and to carry out the requirements of the NPS-
FM effectively and robustly. Therefore, we consider that Section 1.6 of the NPS-FM needs to 
be interpreted carefully and broadly. In our opinion, raw data is not useful information and the 
“best information available” is obtained from a combination of data and modelling. In addition, 
it should always be acknowledged that estimates of state and trends are representations of 
reality with associated uncertainties; both quantified and unquantified. Unquantified 
uncertainties should be understood as differences in assessments of state and trends that 
arise because: 

• no two assessment periods are alike, from, at least, a flow regime perspective 

• modelling involves simplifications of reality and different models and modellers are 
likely to produce different but equally plausible assessments using the same data. 

6.5 Attribution of cause(es) is a very significant challenge 
The requirement under NPS-FM S3.30(2)(d) to assess causes of trends is referred to by 
Snelder et al. (2021b, c) as “attribution”. The present study was not explicitly concerned with 
attribution. However, flow-adjustment and flow normalisation, as undertaken in this study, can 
be regarded as statistical approaches to removing the influence of instantaneous flow and 
longer-term flow regime variability, respectively. The purpose of these procedures is to allow 
attribution of trends to factors other than instantaneous flow and flow regime variability. We 
define “rigorous attribution” (of cause) to mean quantitative analyses of relationships between 
water quality trends and drivers, and consideration of multiple alternative drivers (Ryberg 
2017; Ryberg et al. 2018; Murphy 2020). Rigorous attribution of cause will generally be based 
on statistical models that include multiple alternative drivers, consideration of the physical 
plausibility of the associations, and quantification of the confidence in the inferred causes. We 
identify weaker alternatives to “rigorous attribution” to include qualitative reasoning, references 
to previous studies, and simple speculation.   

In our opinion, AC should strive to undertake robust attribution of cause(s) in seeking to carry 
out the requirements of NPS-FM S3.30(2)(d). However, this is extremely challenging for two 
reasons. First, suitable data characterising spatio-temporal variation in environmental drivers 
of water quality are scarce and fragmented. Suitable data consist of time-series of 
measurements of land use and management and point sources of contaminants, with 
durations and frequencies that correspond to water quality time-series, and which are spatially 
congruent with water quality monitoring sites (Snelder et al. 2021b). Second, water quality is 
generally influenced by multiple environmental drivers, including anthropogenic drivers such 
as land use and natural drivers such as climate variability and its impact on flow regimes. 
There may be additive, compensatory or synergistic interactions among these drivers, making 
it difficult to reliably attribute water quality responses to specific water quality pressures. The 
influences can only be elucidated by modelling and models are dependent on there being 
sufficient sites for the signals (i.e., causes) to rise above the noise.  
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7 Recommendations 
In this section we provide recommendations for dealing with the complications that arise in 
carrying out the requirements of the NPS-FM due to the relationship between water quality 
variables, including NPS-FM attributes, and flow. These recommendations are narrowly 
focussed on technical issues and are based on our technical interpretation of the relevant 
NPS-FM sections and the limitations to scientific quantification of water quality state and 
trends. Our recommendations are distinguished below by bold italic text. 

We recognise that the wording of the NPS-FM can be interpreted less narrowly than our 
interpretation for the purposes explored in this report. Broader interpretation of these policy 
requirements may provide greater discretion for responding to the policy intent. Therefore, we 
consider that our recommendations need to be considered by people with expertise in NPS-
FM implementation. Furthermore, we consider the details of AC’s implementation should be a 
blend of our suggestions with those of policy experts and those charged with NPS-FM 
implementation. The aim should be to strike an appropriate balance between the intent of the 
NPS-FM and what is technically possible and defensible. In our opinion, the need to strike this 
balance means that there is no perfect solution to the problems exposed in this study with 
respect to the uncertainty of state and trend assessments. Therefore, in carrying out its 
functions it is important that AC acknowledges the limitations and is transparent about how 
uncertainty has been dealt with in implementation of the NPS-FM. In addition, we suggest that 
this report and our recommendations should not be regarded as comprehensive or final. This 
is a complex topic that involves multiple disciplines and best practice is therefore likely to 
evolve over time.  

7.1 Recommendations for monitoring and assessment of attribute states 
Our study has shown that water quality variables observed in rivers are correlated to varying 
degrees to instantaneous flow. So that assessments of attribute state describe the true water 
quality state, water quality sampling needs to be unbiased with respect to instantaneous flow 
rate. This ensures that the range of variability in the population of a water quality variable is 
represented by the observations (i.e., the sample). We therefore recommend that water 
quality sampling continues to be carried out so that it is unbiased with respect to 
instantaneous flow. 

Because assessments of attribute state are made from a sample, they should be considered 
as model outputs that contain unavoidable uncertainty. However, the “face value” of an 
assessed attribute state (i.e., the evaluated numeric attribute state or NOF band) is the best 
estimate of the state in the assessment period, given the available data. We therefore 
recommend that: 

- an assessed baseline, or current attribute state is regarded as the “best 
information at the time” as defined by NPS-FM Section 1.6(1) and the uncertainty 
of the assessment is not an adequate reason to delay giving effect to the NPS-
FM.  

- the precision of the current state estimates (as implemented in this study or 
similar) is included when considering and publishing data describing attributes 
and the associated uncertainty (NPS-FM S3.30(1c)).  

- when appropriate, unquantified uncertainty of type A associated with 
baseline/current attribute state is broadly described as arising from the 
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influence of flow regime variability on water quality at timescales of weeks to 
years.  

- when appropriate, it is transparently stated that unquantified uncertainty of type 
A will impact on future water quality state assessments and that when 
appropriate, it is clarified that these fluctuations confound the identification of 
anthropogenic causes of water quality change and the formulation of 
appropriate actions. 

We note that the current MFE guidance regarding S3.18 of the NPS-FM (MFE 2022) does not 
acknowledge that there are uncertainties associated with information derived from monitoring 
data. The MFE guidance does indicate that the monitoring method must be fit for purpose and 
there is therefore a broader question about whether the uncertainties associated with 
monitoring are acceptable. In our opinion, there is insufficient research on the potential impact 
of unquantified uncertainty of type A to answer this question robustly.  

An obvious question is whether water quality monitoring sample frequency is sufficient to 
satisfy the fit for purpose criteria suggested by the MFE guidance. We don’t have any 
recommendations regarding changing water quality monitoring frequency for the purposes of 
state and trend assessment. All other things being equal, increasing monitoring frequency will 
increase the precision of state assessments and confidence in trend assessments. However, 
it is not clear how helpful this will be because it does not address the issue of unquantified 
uncertainty of type A. We recommend that more research is needed into increasing the 
certainty of state and trend assessments.  

7.2 Recommendations for target attribute states 
We recommend that the impact of unquantified uncertainty of type A on assessment of 
baseline, and current state is considered when setting target attribute states and 
developing actions to improve water quality. This could take the form of sensitivity 
analyses that test the extent to which planned actions may fail to achieve target attribute states 
in future assessment periods due to foreseeable influence of flow regime variability on water 
quality.  

We recommend that analysis of water quality time series is used to attempt to quantify 
the potential magnitude of foreseeable fluctuations in water quality due to flow regime 
variation. We suggest that the WRTDS model is a promising tool for this type of investigation. 
We also suggest that AC’s process-based Freshwater Management Tool (FWMT) is 
potentially useful for this type of analysis.  

7.3 Recommendations for analysing and reporting on trends in water quality 
over time 

We recommend that water quality trend assessments are always represented as model 
outputs that are unavoidably uncertain. To manage the uncertainty, we recommend that 
AC consider that there are two types of application of trend analysis; “regional 
application” and “local application” as described by the current guidance on trend 
assessment (Snelder et al. 2021a). A “regional application” of trend analysis should be 
regarded as assessing and reporting trends across many sites and variables in the context of 
regional SOE monitoring programmes, and to satisfy requirements to publish information 
about state and trends set out in the NPS-FM. We recommend that AC utilises “regional 
application” of trend analysis to fulfil its NPS-FM requirements to assess progress 
towards target attribute states under S3.30(2)(c). A “regional application” should use a 
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consistent methodology over sites and variables and should be regarded as a screening 
exercise that seeks to identify problem locations for closer inspection. The currently accepted 
approach to “regional application” of trend assessment is the use of non-parametric correlation 
and regression as set out in (Snelder et al. 2021a) and as used to make trend assessments 
in this study. In relation to “regional application” of trend analysis, we recommend that: 

- flow-adjustment is not undertaken and only raw (un-adjusted) trends are 
reported under S3.30(2)(c). 

- it is made clear in reporting that trend assessments only describe changes in 
water quality that were observed and not what they were caused by. 

- consideration is given to reporting trend assessment periods of at least 10-year 
periods, and possibly longer to reduce the likelihood that abrupt changes in 
these assessments occur if reporting occurs frequently (e.g., annually). 

We recommend that AC regards “local application” of trend analysis to be associated 
with the requirements to assess trends and their causes under NPS-FM S3.30(2)(d). We 
recommend that “local application” of trend analysis is “triggered” where (i.e., for those 
sites and variables) “regional application” undertaken to fulfil S3.30(2)(c) requirements 
provides evidence that deterioration was observed. The objective of a local application is 
to extract as much information as possible about the trend direction and rate of change from 
the available data (Snelder et al. 2021a). A local application may therefore utilise more than 
one statistical method and may produce assessments that are inconsistent with assessments 
made using the approach recommended for a “regional application”. NPS-FM S3.30(2)(c) and 
S3.30(2)(d) require assessment of trends and their causes. Therefore, we recommend that 
it is appropriate for local application of trend analysis to incorporate flow-adjustment. 
However, we recommend caution with inferences made from flow-adjusted trends and that it 
is kept in mind that flow-adjustment adds unquantified uncertainty of type B to the assessment 
and does not remove the influence of flow regime variation to trend assessments. It is 
important to acknowledge that there is no definitive numeric data driven assessment that can, 
with complete accuracy, assess progress towards target attribute states or attribute a trend to 
a cause. A combination of analysis and modelling and use of different lines of evidence (e.g., 
water quality observations, measured actions and/or physical changes in the catchment) will 
need to be used to arrive at a “reasoned judgement” about progress in river health and causes 
of trends. 

We recommend that the NPS-FM requirements to assess trends and their causes under 
NPS-FM S3.30(2)(d) should be applied by ensuring, whenever possible, that water 
quality monitoring is associated with flow data. In our opinion, the interpretability and 
therefore, value of water quality data, is dependent on associated flow measurement. The 
manner in which the WRTDS model combines daily flow records with less frequent water 
quality observations indicates that flow data needs to be, at least, at the daily timescale. Flow 
data at least at the daily timescale is also required for estimating contaminant loads, which is 
also likely to be needed to support ongoing NPS-FM implementation. We acknowledge that it 
will not always be possible to have river water quality monitoring sites co-located with flow 
sites and that water quality monitoring sites that do not have measured flows are nevertheless 
useful. We therefore recommend that AC considers collecting data over the long term 
to improve the ability to use models to provide synthetic flow records for water quality 
monitoring sites that do not have measured flow.   
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We recommend that, to the extent that it is possible, trend cause attribution 
incorporates assessment of hydrological drivers. We don’t have specific 
recommendations for how to do this and consider that the study of attribution of causes of 
water quality trends should be an active area of research. We suggest that new water quality 
modelling tools such as WRTDS and AC’s FWMT model are potentially useful for this type of 
analysis.   

7.4 Recommendations for acting on degrading trends 
We recommend a cautious and staged approach with respect to taking action when 
degrading trends are detected. We recommend that degrading trends indicated by “regional 
application” of trend analysis to fulfil NPS-FM S3.30(2)(c) requirements are treated as 
“triggers” for closer analysis by “local application” of trend analysis (see the recommendations 
under Section 7.3 above). The evidence provided by “local application” of trend analysis can 
then be used to make judgements about taking proportionate action at stage 1. Stage 1 may 
include taking cautious action on the ground and/or potentially increased monitoring effort and 
ongoing surveillance of possible water quality pressures. In situations where there is an 
absence of information about trend drivers, such as changes in land use and management, 
and contaminant discharges, an appropriate response might be to retrospectively gather this 
information while continuing to monitor water quality. If deteriorating trends continue and/or 
confidence in the causes of these trends is judged sufficiently high, then stage 2 would be 
triggered that would involve significant intervention in the catchment to halt and reverse 
degradation. This staged approach is consistent with current MFE guidance regarding S3.20 
of the NPS-FM (MFE 2022). The guidance points out that S3.19 “allows councils discretion 
based on risk, and on whether it is possible to determine unnatural cause, before declaring an 
attribute is ‘degrading’”. The guidance also indicates that the intent of the policy is that “the 
response should be proportionate to the likelihood of degradation, the magnitude and the risk 
to the environment, and the risk of not achieving the target attribute state”. 

We recommend gathering data describing possible causes of trends, such as changes 
in land use practices and intensity, changes in point source discharge loads, and 
adoption of actions in the catchments of monitoring sites and across the Region in 
general. These data will be useful explanatory variables in any future attempt to robustly 
attribute water quality changes to anthropogenic causes and in our experience are frequently 
lacking. We note that this recommendation is consistent with the current MFE guidance 
regarding S3.18 of the NPS-FM (MFE 2022). That guidance suggests that “monitoring should 
not be limited to the state of the water body” and that it should include drivers such as land 
use and land use intensity as well as the implementation of actions such as “the rules and 
actions aim to halt expansion or intensity”. 

We recommend that thought is given to how physical changes in relevant water quality 
drivers are measured and recorded. We suggest that to some extent at least, the relevant 
measurements are going to be indicated by existing water quality models such as AC’s FWMT. 
In our experience, limitations around accurate representation of water quality drivers includes 
issues such as insufficient data describing concentrations and flow of point source discharges, 
insufficient data describing land use (particularly agricultural land use) and insufficient data 
describing land management practices.  

It is unclear whether more frequent monitoring would improve our confidence to act, because 
attributing the change to causes so that appropriate action is taken will remain a significant 
issue even if the precision of trend assessments is increased. We recommend that more 
research is needed into attributing water quality changes to causes.  
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Robust attribution of cause(s) is difficult and will always be facilitated by increasing the number 
of monitoring sites. Increasing the site coverage will improve attribution of cause(s) in the long 
term. This study has also shown the value of having continuous daily flow data at monitoring 
sites. Therefore, we recommend that priority is given to adding sites to the water quality 
monitoring network that can be associated with flow data. We acknowledge that 
synthetic (i.e., modelled) flow data may be suitable for this purpose. If a flow modelling 
approach is to be taken at state of environment monitoring sites, AC should consider the ability 
to predict flows at those sites and the ability to model flows at new sites should be considered 
along with any other new site selection criteria. 

Finally, because attribution of causes to trends is dependent on both the collection of data and 
analysis (i.e., modelling), we recommend monitoring and modelling are treated as equal 
and mutually informative processes that must work together to fulfil AC’s functions and 
duties under the RMA and NPS-FM. 

   



 

 Page 86 of 100 

8 Acknowledgements 
We thank Auckland Council (RIMU) for provision of data and conversations during the course 
of this study. We thank Caroline Fraser and Ned Norton (LWP Ltd) for help with analysis and 
review comments on early drafts of this report. 

  



 

 Page 87 of 100 

9 References 
Ballantine DJ, Davies-Colley RJ (2014) Water quality trends in New Zealand rivers: 1989–

2009. Environmental Monitoring and Assessment 186:1939–1950 

Best J (2019) Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12:7–21 

Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion. 
Statistical science 16:101–133 

Chen T, Bao A, Jiapaer G, et al (2019) Disentangling the relative impacts of climate change 
and human activities on arid and semiarid grasslands in Central Asia during 1982–
2015. Science of the Total Environment 653:1311–1325 

Choquette AF, Hirsch RM, Murphy JC, et al (2019) Tracking changes in nutrient delivery to 
western Lake Erie: Approaches to compensate for variability and trends in 
streamflow. Journal of Great Lakes Research 45:21–39 

Franklin P, Stoffels R, Clapcott J, et al (2019) Deriving potential fine sediment attribute 
thresholds for the National Objectives Framework. NIWA, Hamilton, New Zealand 

Gadd J, Williamson B, Mills GN, et al (2019) Developing Auckland-specific ecosystem health 
attributes for copper and zinc: summary of work to date and identification of future 
tasks. Auckland Council 

Gascuel-Odoux C, Aurousseau P, Durand P, et al (2010) The role of climate on inter-annual 
variation in stream nitrate fluxes and concentrations. Science of the total environment 
408:5657–5666 

Helsel DR, Hirsch RM, Ryberg KR, et al (2020) Statistical methods in water resources. 
Reston, VA 

Hirsch RM, Archfield SA, De Cicco LA (2015) A bootstrap method for estimating uncertainty 
of water quality trends. Environmental Modelling & Software 73:148–166. 
https://doi.org/10.1016/j.envsoft.2015.07.017 

Hirsch RM, De Cicco LA (2015) User guide to Exploration and Graphics for RivEr Trends 
(EGRET) and dataRetrieval: R packages for hydrologic data. US Geological Survey 

Hirsch RM, Moyer DL, Archfield SA (2010) Weighted regressions on time, discharge, and 
season (WRTDS), with an application to Chesapeake Bay river inputs 1. JAWRA 
Journal of the American Water Resources Association 46:857–880 

Ingley R (2021a) River Water Quality State and Trends in Tāmaki Makaurau / Auckland 
2010-2019. State of the Environment Reporting. Auckland Council, Auckland, New 
Zealand 

Ingley R (2021b) River Water Quality State and Trends in Tāmaki Makaurau / Auckland 
2010-2019. State of the Environment Reporting. Auckland Council, Auckland 

Ingley R, Groom J (2022) River Water Quality in Tāmaki Makaurau / Auckland 2020 Annual 
Reporting and National Policy Statement for Freshwater Management Current State 
Assessment. Auckland Council, Auckland, New Zealand 



 

 Page 88 of 100 

Ingley R, Groom J (2021) River Water Quality in Tāmaki Makaurau / Auckland 2019 Annual 
Reporting and National Policy Statement for Freshwater Management Current State 
Assessment. Auckland Council, Auckland 

Kundzewicz Z, Robson A (2000) Detecting trend and other changes in hydrological data. 
World Meteorological Organization 

Lanzante JR (2021) Testing for differences between two distributions in the presence of 
serial correlation using the Kolmogorov–Smirnov and Kuiper’s tests. International 
Journal of Climatology 41:6314–6323 

Larned S, Whitehead A, Fraser CE, et al (2018) Water quality state and trends in New 
Zealand rivers. Analyses of national-scale data ending in 2017. NIWA 

Larned ST, Snelder T, Unwin MJ, McBride GB (2016) Water quality in New Zealand rivers: 
current state and trends. New Zealand Journal of Marine and Freshwater Research 
50:389–417 

Lee H, Lau S-L, Kayhanian M, Stenstrom MK (2004) Seasonal first flush phenomenon of 
urban stormwater discharges. Water research 38:4153–4163 

Margariti J, Rangecroft S, Parry S, et al (2019) Anthropogenic activities alter drought 
termination. Elementa: Science of the Anthropocene 7: 

Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. Journal of the American 
statistical Association 46:68–78 

McBride GB (2016) National Objectives Framework. Statistical considerations for design and 
assessment. NIWA, Hamilton, New Zealand 

McBride GB (2005) Using statistical methods for water quality management: issues, 
problems and solutions. John Wiley & Sons, New Jersey 

MFE (2020) National Policy Statement for Freshwater Management 2020 

MFE (2022) Guidance on the National Objectives Framework of the National Policy 
Statement for Freshwater Management. Ministry  for  the  Environment., Wellington, 
New  Zealand 

Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: 
Performance measures and evaluation criteria. Transactions of the ASABE 58:1763–
1785 

Mullan B (1996) Effects of ENSO on New Zealand and the South pacific. The Royal Society 
of New Zealand, Wellington, New  Zealand 

Murphy JC (2020) Changing suspended sediment in United States rivers and streams: 
linking sediment trends to changes in land use/cover, hydrology and climate. 
Hydrology & Earth System Sciences 24:991–1010 

NZ Government (1991) Resource Management Act 

Ryberg KR (2017) Structural equation model of total phosphorus loads in the Red River of 
the North Basin, USA and Canada. Journal of environmental quality 46:1072–1080 



 

 Page 89 of 100 

Ryberg KR, Blomquist JD, Sprague LA, et al (2018) Modeling drivers of phosphorus loads in 
Chesapeake Bay tributaries and inferences about long-term change. Science of the 
Total Environment 616:1423–1430 

Salinger MJ, Mullan AB (1999) New Zealand climate: temperature and precipitation 
variations and their links with atmospheric circulation. International Journal of 
Climatology: A Journal of the Royal Meteorological Society 19:1049–1071 

Scarsbrook MR, McBride CG, McBride GB, Bryers GG (2003) Effects of Climate Variability 
on Rivers: Consequences for Long Term Water Quality Analysis. JAWRA Journal of 
the American Water Resources Association 39:1435–1447. 
https://doi.org/10.1111/j.1752-1688.2003.tb04429.x 

Smith DG, McBride GB, Bryers GG, et al (1996) Trends in New Zealand’s national river 
water quality network. New Zealand Journal of Marine and Freshwater Research 
30:485–500 

Snelder T, Fraser C, Larned S, Whitehead A (2021a) Guidance for the analysis of temporal 
trends in environmental data. NIWA, Christchurch 

Snelder T, Fraser C, Whitehead A (2022) Continuous measures of confidence in direction of 
environmental trends at site and other spatial scales. Environmental Challenges In 
press:1–11 

Snelder TH, Fraser C, Larned ST, et al (2021b) Attribution of river water-quality trends to 
agricultural land use and climate variability in New Zealand. Marine and Freshwater 
Research 

Snelder TH, J. Booker D (2013) Natural flow regime classifications are sensitive to definition 
procedures. River Research and Applications 29:822–838 

Snelder TH, Larned ST, Fraser C, De Malmanche S (2021c) Effect of climate variability on 
water quality trends in New Zealand rivers. Marine and Freshwater Research 

Snelder TH, McDowell RW, Fraser CE (2017) Estimation of catchment nutrient loads in New 
Zealand using monthly water quality monitoring data. JAWRA Journal of the 
American Water Resources Association 53:158–178 

Sofi MS, Bhat SU, Rashid I, Kuniyal JC (2020) The natural flow regime: A master variable for 
maintaining river ecosystem health. Ecohydrology 13:e2247 

Whitehead A, Fraser CE, Snelder TH, et al (2021) Water quality state and trends in New 
Zealand Rivers. Analyses of national data ending in 2020. NIWA, Christchurch 

Wilson E (1927) Calculating a confidence interval of a proportion. J Am Stat Assoc 22:209–
212 

Wilusz DC, Harman CJ, Ball WP (2017) Sensitivity of catchment transit times to rainfall 
variability under present and future climates. Water Resources Research 53:10231–
10256 

Zar JH (1999) Biostatistical Analysis. Prentice-Hall, New Jersey 

  



 

 Page 90 of 100 

Appendix A Site Details 

Table 8. Details of the 15 water quality sites and related flow sites that were used in the analyses presented in this report. 

Water Quality Site Name Water 
Quality 
Site ID 

Water quality record 
length (years) and 

number of 
observations 

Flow Site Name Flow 
Site ID 

Flow 
Record 
length 
(years) 

Comment on water quality and flow 
site locations 

Hoteo 45703 32 (386) Hoteo River 45703 43.6 Paired 

Mahurangi River (Warkworth) 6804 
28 (321) 

College 6806 36.1 
Water quality site approx. 750 m 
downstream of flow site 

West Hoe Stream 7206 19 (216) West Hoe Stream 7206 18.2 Paired 

Kaukapakapa River 45415 12 (143) Kaukapakapa @Taylors 45415 22.6 Paired 

Vaughan Stream 7506 20 (223) Vaughn Stream 7506 18 Paired 

Lucas Creek 7830 28 (327) Lucas Creek 7830 14.3 Paired 

Oteha River 7811 35 (413) Oteha Stream 7811 40.4 Paired 

Rangitopuni River 7805 
35 (325) 

Rangitopuni River 7805 45.8 
Water quality site approx. 900 m 
downstream of flow site 

Opanuku Stream 7904 35 (325) Opanuku Stream 7904 14.6 Paired 

Otara Creek (East) 8205 
35 (415) 

Hills Road Bridge 8208 29.1 
Water quality site approx. 1.2 km 
upstream of flow site 

Puhinui Stream 43807 29 (347) Puhinui Stream 43807 41.6 Paired 

Wairoa River 8516 27 (321) Wairoa River 8516 42 Paired 

Papakura Stream (Lower) 43856 
35 (414) 

Gt Sth Rd 43803 48.6 
Water quality site approx. 2km upstream 
of flow site 

Ngakoroa Stream 43829 28 (329) Ngakoroa Stream 43829 40.8 Paired 

Waitangi Stream 43601 
28 (329) 

Waitangi @ Weir 43602 55.9 
Water quality site approx. 1.2 km 
downstream of flow site 
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Appendix B Hydrographs 

 

Figure 32. Hydrographs and water quality observation day flows for the 15 water quality sites 
used in the analyses presented in this report. The hydrographs are indicated as black lines 
and the observation day flows as maroon dots. Larger versions of these plots are available in 
the supplementary file “Appendix B Hydrographs.pdf”. 
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Appendix C Flow distributions 

 

Figure 33. Flow duration curves for 5-year periods and for the full flow record for the 15 water 
quality sites used in the analyses presented in this report. Note the y-axes are log transformed. 
Larger versions of these plots are available in the supplementary file “Appendix C Flow 
distributions.pdf”. 
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Appendix D Site-Variable flow-adjustment models 

Table 9. Site-variable combinations with plausible flow-adjustment models. The criteria for 
plausibility is described in Section 4.4 and includes r2 ≥ 20% and p<0.01. All subjectively 
selected models had p values less than 0.001 

Site Variable Model r2 Number of 
observations 

Hoteo River (45703) CLAR GAM 0.76 381 

Hoteo River (45703) TN LinLog 0.61 367 

Hoteo River (45703) DIN LinLog 0.49 536 

Hoteo River (45703) NNN LinLog 0.46 563 

Hoteo River (45703) TP GAM 0.4 647 

Hoteo River (45703) ECOLI GAM 0.33 217 

Mahurangi River (Warkworth) (6804) CLAR GAM 0.73 175 

Mahurangi River (Warkworth) (6804) CU LinLog 0.35 100 

Mahurangi River (Warkworth) (6804) TN LinLog 0.35 118 

Mahurangi River (Warkworth) (6804) DIN LinLog 0.33 290 

Mahurangi River (Warkworth) (6804) NNN LinLog 0.33 295 

Mahurangi River (Warkworth) (6804) TP GAM 0.32 295 

West Hoe Stream (7206) CLAR GAM 0.22 195 

Kaukapakapa River (45415) TN LinLog 0.61 142 

Kaukapakapa River (45415) DIN LinLog 0.59 141 

Kaukapakapa River (45415) NNN LinLog 0.59 141 

Kaukapakapa River (45415) CLAR LinLog 0.42 143 

Kaukapakapa River (45415) ECOLI GAM 0.25 143 

Kaukapakapa River (45415) TP GAM 0.22 143 

Vaughan Stream (7506) CLAR LinLog 0.32 186 

Vaughan Stream (7506) CU GAM 0.32 168 

Vaughan Stream (7506) TN GAM 0.27 126 

Vaughan Stream (7506) TP GAM 0.24 191 

Vaughan Stream (7506) NNN LinLog 0.19 190 

Vaughan Stream (7506) DIN LinLog 0.17 188 

Lucas Creek (7830) CLAR LinLog 0.54 157 

Lucas Creek (7830) CU LinLog 0.43 157 
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Site Variable Model r2 Number of 
observations 

Lucas Creek (7830) ECOLI LinLog 0.18 157 

Oteha River (7811) CLAR GAM 0.64 201 

Oteha River (7811) ECOLI LinLog 0.21 173 

Oteha River (7811) ZN LinLog 0.21 295 

Rangitopuni River (7805) CLAR LinLog 0.62 465 

Rangitopuni River (7805) NNN LinLog 0.49 586 

Rangitopuni River (7805) DIN LinLog 0.48 568 

Rangitopuni River (7805) TN LinLog 0.45 394 

Rangitopuni River (7805) TP GAM 0.31 668 

Rangitopuni River (7805) ECOLI GAM 0.28 247 

Opanuku Stream (7904) CLAR LinLog 0.57 167 

Opanuku Stream (7904) TN LinLog 0.22 140 

Otara Creek (East) (8205) CLAR LinLog 0.49 201 

Otara Creek (East) (8205) NNN LinLog 0.38 339 

Otara Creek (East) (8205) TN LinLog 0.33 141 

Otara Creek (East) (8205) DIN LinLog 0.29 337 

Puhinui Stream (43807) CLAR LinLog 0.45 201 

Puhinui Stream (43807) TN LinLog 0.38 143 

Puhinui Stream (43807) DIN LinLog 0.14 311 

Puhinui Stream (43807) NNN LinLog 0.13 313 

Wairoa River (8516) CLAR GAM 0.64 202 

Wairoa River (8516) TN LinLog 0.64 143 

Wairoa River (8516) DIN LinLog 0.58 341 

Wairoa River (8516) NNN LinLog 0.57 343 

Wairoa River (8516) ECOLI GAM 0.34 172 

Wairoa River (8516) CU LinLog 0.16 125 

Papakura Stream (Lower) (43856) CU LinLog 0.59 126 

Papakura Stream (Lower) (43856) CLAR LinLog 0.58 203 

Papakura Stream (Lower) (43856) TN GAM 0.58 144 

Papakura Stream (Lower) (43856) NNN LinLog 0.52 325 

Papakura Stream (Lower) (43856) DIN LinLog 0.5 323 
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Site Variable Model r2 Number of 
observations 

Papakura Stream (Lower) (43856) TP GAM 0.42 325 

Papakura Stream (Lower) (43856) ZN LinLog 0.4 125 

Ngakoroa Stream (43829) TN GAM 0.41 143 

Ngakoroa Stream (43829) CLAR LinLog 0.35 202 

Ngakoroa Stream (43829) DIN GAM 0.13 320 

Ngakoroa Stream (43829) NNN GAM 0.13 322 

Waitangi Stream (43601) TN LinLog 0.71 144 

Waitangi Stream (43601) CLAR LinLog 0.67 143 

Waitangi Stream (43601) DIN LinLog 0.64 142 

Waitangi Stream (43601) NNN LinLog 0.63 142 

Waitangi Stream (43601) TP GAM 0.51 142 

Waitangi Stream (43601) NH4N GAM 0.41 140 

Waitangi Stream (43601) DRP LinLog 0.26 141 

Waitangi Stream (43601) ECOLI GAM 0.23 144 
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Appendix E Trend Assessments 

Table 10. Trend likelihood categories and their related Mann-Kendall statistics.  

Trend likelihood category Trend 
symbol 

Mann-Kendall S 
statistic 

Confidence the trend 
was decreasing 

Highly likely decreasing +++ Negative 0.95 – 1.0 

Very likely decreasing ++ Negative 0.9 – 0.95 

Likely decreasing + Negative 0.67 – 0.9 

As likely increasing as decreasing ± Negative 0.50 – 0.67 

As likely increasing as decreasing ± Positive 0.50 – 0.67 

Likely increasing - Positive 0.67 – 0.90 

Very likely increasing -- Positive 0.90 – 0.95 

Highly likely increasing --- Positive 0.95 – 1.0 
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Table 11. Trend categories for site-variable combinations before and after flow-adjustment.  

Site Variable 

2007-2017 2008-2018 2009-2019 2010-2020 

Raw Adj Raw Adj Raw Adj Raw Adj 

Hoteo River (45703) TP - -- + ± + + -- ± 

Hoteo River (45703) TN - ± + ± + ± ± ++ 

Hoteo River (45703) NNN --- -- ± ± ± ± ± NA 

Hoteo River (45703) ECOLI - - + ± + + ++ +++ 

Hoteo River (45703) DIN --- -- ± ± ± ± ± + 

Hoteo River (45703) CLAR +++ +++ ± + ± + ++ ± 

Mahurangi River 
(Warkworth) (6804) TP ++ +++ ++ + ± ++ - + 

Mahurangi River 
(Warkworth) (6804) TN -- -- - -- ± ± + ± 

Mahurangi River 
(Warkworth) (6804) NNN -- ± ± ± +++ ± + ± 

Mahurangi River 
(Warkworth) (6804) DIN --- ± - - + ± ± - 

Mahurangi River 
(Warkworth) (6804) CU - ± + ± + - + - 

Mahurangi River 
(Warkworth) (6804) CLAR ++ ++ ± ± ± - +++ ± 

West Hoe Stream (7206) CLAR +++ +++ +++ +++ +++ +++ +++ +++ 

Kaukapakapa River (45415) TP --- --- --- --- --- --- --- --- 

Kaukapakapa River (45415) TN --- -- -- --- - - -- + 

Kaukapakapa River (45415) NNN - ± - ± - - --- ± 

Kaukapakapa River (45415) ECOLI ± ± ± ± - ± - ± 

Kaukapakapa River (45415) DIN - - ± -- - - -- ± 

Kaukapakapa River (45415) CLAR +++ +++ +++ +++ + ± ++ ± 

Vaughan Stream (7506) TP - ± - ± --- - -- -- 

Vaughan Stream (7506) TN --- - --- --- --- -- - ± 

Vaughan Stream (7506) NNN + +++ + + + ± + ± 

Vaughan Stream (7506) DIN + +++ ± + - ± - + 

Vaughan Stream (7506) CU + +++ + +++ ++ ++ +++ +++ 

Vaughan Stream (7506) CLAR - --- --- --- --- --- - --- 
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Site Variable 

2007-2017 2008-2018 2009-2019 2010-2020 

Raw Adj Raw Adj Raw Adj Raw Adj 

Lucas Creek (7830) ECOLI + + +++ + + ± ± ± 

Lucas Creek (7830) CU - -- ++ + +++ +++ +++ +++ 

Lucas Creek (7830) CLAR +++ +++ ± +++ + +++ ++ +++ 

Oteha River (7811) ZN ± + ± ± + ± + ++ 

Oteha River (7811) ECOLI ++ +++ +++ + +++ + + ± 

Oteha River (7811) CLAR ± ± --- + -- ± ± + 

Rangitopuni River (7805) TP --- --- -- --- --- --- --- --- 

Rangitopuni River (7805) TN ± + + ± ± - --- - 

Rangitopuni River (7805) NNN - - - NA -- NA --- NA 

Rangitopuni River (7805) ECOLI - - ± ± ± ± - ± 

Rangitopuni River (7805) DIN -- - - --- --- -- --- NA 

Rangitopuni River (7805) CLAR + + - ± - - +++ +++ 

Opanuku Stream (7904) TN -- - - - ± ± + ++ 

Opanuku Stream (7904) CLAR + +++ + + + ± + + 

Otara Creek (East) (8205) TN --- --- --- --- --- --- - - 

Otara Creek (East) (8205) NNN --- --- - --- - ± ± ++ 

Otara Creek (East) (8205) DIN --- --- --- --- --- - - + 

Otara Creek (East) (8205) CLAR ± +++ - ± ± ± + + 

Puhinui Stream (43807) TN --- --- -- --- - -- --- - 

Puhinui Stream (43807) NNN --- --- - ± ± ± - ± 

Puhinui Stream (43807) DIN --- --- - - ± - - ± 

Puhinui Stream (43807) CLAR +++ +++ +++ +++ +++ +++ +++ +++ 

Wairoa River (8516) TN --- --- -- --- ± - ± + 

Wairoa River (8516) NNN --- --- - --- + ± + +++ 

Wairoa River (8516) ECOLI --- --- --- --- --- --- -- --- 

Wairoa River (8516) DIN --- --- - --- ++ ± + +++ 

Wairoa River (8516) CU - -- ± ± ++ + + ++ 

Wairoa River (8516) CLAR +++ +++ ++ +++ ± + +++ + 

Papakura Stream (Lower) 
(43856) ZN ± - - --- - --- - - 
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Site Variable 

2007-2017 2008-2018 2009-2019 2010-2020 

Raw Adj Raw Adj Raw Adj Raw Adj 

Papakura Stream (Lower) 
(43856) TP --- --- --- --- ± -- ± -- 

Papakura Stream (Lower) 
(43856) TN - --- -- --- - -- ± ± 

Papakura Stream (Lower) 
(43856) NNN - --- ± --- ± - ± +++ 

Papakura Stream (Lower) 
(43856) DIN --- --- - --- - - ± +++ 

Papakura Stream (Lower) 
(43856) CU + ± ++ + +++ +++ + ++ 

Papakura Stream (Lower) 
(43856) CLAR + +++ -- ± --- --- ± --- 

Ngakoroa Stream (43829) TN + ± ± ± - - - - 

Ngakoroa Stream (43829) NNN +++ +++ +++ +++ +++ ++ ++ +++ 

Ngakoroa Stream (43829) DIN +++ +++ +++ +++ +++ ++ ++ +++ 

Ngakoroa Stream (43829) CLAR ± + -- - ± + +++ +++ 

Waitangi Stream (43601) TP + - + - - --- --- --- 

Waitangi Stream (43601) TN ++ +++ +++ +++ +++ +++ ± +++ 

Waitangi Stream (43601) NNN +++ +++ +++ +++ +++ +++ +++ +++ 

Waitangi Stream (43601) NH4N --- --- --- --- -- --- - - 

Waitangi Stream (43601) ECOLI --- --- --- --- --- --- -- --- 

Waitangi Stream (43601) DRP +++ +++ ± ± -- -- --- --- 

Waitangi Stream (43601) DIN +++ +++ +++ +++ +++ +++ +++ +++ 

Waitangi Stream (43601) CLAR + ++ ± + ++ + +++ +++ 
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	Executive Summary
	Assessment of water quality state and trends are requirements of Section 35 of the Resource Management Act (RMA: NZ Government 1991) and the National Policy Statement for Freshwater Management 2020 (NPS-FM). The NPS-FM defines certain compulsory water quality variables to be attributes of the values of ecosystem health and human contact, the details of which are set out in the National Objectives Framework (NOF). NOF numeric attribute states are evaluated from water quality observations obtained by water quality monitoring and are generally percentiles of water observations (e.g., 50th percentile (median), 95th percentile). For each attribute, the NPS-FM also defines categorical attribute states, which are derived by assigning numeric attribute states in four (or five) “NOF bands”, which are designated A to D (or E).
	The NPS-FM requires that the baseline attribute states are established as an initial step in the planning process and that attributes are used as a basis for setting target attributes states. The NPS-FM also requires that the condition of water bodies (the current attribute state) is systematically monitored and reported, and that action is taken where monitoring indicates deteriorating trends. 
	Flow influences water quality in rivers and streams across a range of timescales and therefore has an impact on attribute state and trends. Therefore, flow is often monitored at water quality monitoring sites and flow data is important supplementary information in the analysis of water quality state and trends. It is important for Auckland Council (AC) to consider how flow influences attribute state and trends, how to incorporate information about flow into assessment of state and trends and to ensure that continued monitoring of water quality and flow is consistent with the requirements of the NPS-FM. It is also important for AC to consider whether assessment of state and trends is consistent with the requirements of the NPS-FM and to be clear about the uncertainties associated with these assessments. AC therefore commissioned this study to provide guidance with respect to how to account for the influence of flow in both the sampling and analysis of water quality data and the implications of this specifically in relation to the requirements of the NPS-FM.  
	This study undertook a series of analyses of water quality and flow data associated with 15 sites and 10 water quality variables (of which five are NOF attributes) in the Auckland region. These analyses and the salient results are as follows:
	1. Attribute state is estimated from water quality observations pertaining to an “assessment period”. AC samples water quality monthly, and in this study, the assessment period was five years, which are consistent with current practice. We assessed the current attribute state from the observations and estimated the precision of these assessments. Limited precision means the assessed state is not exact and arises because the observations represent a finite sample of the population (i.e., a subset of all possible water quality observations). The 95% confidence interval for the assessed state of some NOF attributes often extended over two, three or even four NOF bands. 
	2. We refer to instantaneous flow as the flow in a river or stream at the time the water quality was sampled. In this study the instantaneous flow was quantified by the mean daily flow observed at a nearby river flow gauging station. The flow regime refers to the characteristics of flows at longer than instantaneous timescales, including weeks, months and years. Flow regimes can be characterised by many statistics such as mean and median flows, variability, and seasonality. Variation in these types of statistics at timescales of weeks, months and years are all measures of flow regime variability. A drought year, for instance, will feature more frequent low flows than the long-term flow regime. This study showed that there is marked flow regime variation associated with different five-year assessment periods. Because flow influences water quality in rivers and streams, flow regime variation can cause differences in attribute states between assessment periods. This leads to uncertainty in state assessments that is additional to imprecision, and which is unquantified. We refer to this uncertainty as type A. Unquantified uncertainty of type A means there will be differences in assessments between assessment periods (such as between baseline state and current state) that is driven by flow regime variability that would occur even if there were no changes in the anthropogenic pressure in a catchment. 
	3. Water quality measures in rivers and streams are influenced by the instantaneous flow rate (i.e., discharge at the time the sample was taken). The strength of the relationship between observations and instantaneous flow differs across variables and sites and is associated with differences in the underlying mechanisms of mobilisation (“wash-off”) and dilution of the contaminants. Water quality observations need to be unbiased with respect to instantaneous flow if they are to represent the true attribute state. We found that the distribution of flows associated with AC’s water quality observations were not significantly different to the full flow distribution and can therefore be regarded as unbiased with respect to flow. 
	4. The relationships between water quality observations and instantaneous flow are commonly represented by bivariate (i.e., observation - flow) statistical models. These models are used in trend assessment in a statistical treatment known as flow-adjustment. The purpose of flow-adjustment is to remove the confounding effect of flow so that the pattern of interest (the relationship between the observed water quality observations and time (i.e., the trend) can be more confidently inferred. This study showed that the definition of models describing observations - instantaneous flow is subjective and therefore there are unquantified uncertainties that arise due to procedural choices around flow adjustment that are likely to be made by individual analysts. 
	5. Trend analyses for all site variable combinations were used to demonstrate that procedural choices made in association with flow-adjustment have an appreciable influence on the assessment. These differences represent an unquantified uncertainty that is associated with trend assessment that we refer as unquantified uncertainty of type B. 
	6. We undertook rolling trend analyses with assessment periods of differing duration (5, 10 and 20-years) and the starting year incrementing by one year. These analyses indicate that site trend direction tends to oscillate (i.e., trend directions can reverse from increasing to decreasing over short time periods). The length of the reversal time decreases with decreasing trend period duration. This indicates that short-term trends (e.g., 5 and 10-year duration) are likely to be strongly influenced by flow regime variation. This was true even when trends were flow-adjusted. We showed that these reversals are associated with flow regime variability by employing a model that combines the entire flow record with the water quality observation know as Weighted Regression on Time, Discharge, and Season (WRTDS). This result indicates that water quality trends are at least partly associated with flow regime variation. The oscillations in the trends are evidence that the flow regime variation, and associated water quality variation, is partly attributable to quasi-periodic climate variation such as the El Niño-Southern Oscillation (ENSO). It is important to emphasise that this study has shown a link between water quality state and flow regime variation but did not directly investigate climate variation. However, there is direct evidence of the link between ENSO and water quality variation in New Zealand at interannual timescales. Therefore, when this report refers to the impact of “flow regime variability” on water quality, it is appropriate to consider that climatic variation is at least partly involved.
	The important conclusions and some of our recommendations from these findings are as follows:
	1. Water quality in rivers and streams is linked to flow, including the instantaneous flow at the time of sampling and the longer-term flow regime. Flow data should therefore be regarded as important additional information that assists the analysis and interpretation of attribute state and trends. Continuous flow time series can be used to characterise flow regime variation, which in turn, provides insights into the generation, mobilisation, storage and transport of contaminants in catchments. Therefore, we recommend that where possible, water quality monitoring should be associated with continuous flow measurements preferably from flow recorders or alternatively derived synthetically (i.e., modelled). 
	2. Assessed attribute states are associated with both quantified uncertainty (imprecision) and unquantified uncertainty of type A. We recommend that the assessed state be regarded as the “best information at the time” as defined by NPS-FM Section 1.6(1) but that AC is transparent about both types of uncertainty and that uncertainty is given due consideration when using and publishing data describing attribute states.
	3. We recommend that the impact of unquantified uncertainty of type A on assessment of baseline and current state is considered when setting target attribute states and developing actions to improve water quality. This could take the form of sensitivity analyses that test the extent to which planned actions may fail to achieve target attribute states in future assessment periods due to foreseeable influence of flow regime variability on future attribute states.
	4. We recommend that water quality trend assessments are always represented as model outputs that are unavoidably uncertain. To the extent possible, AC should be transparent about the uncertainties associated with water quality trend assessment, particularly when reporting trends. Because flow-adjustment introduces additional unquantified uncertainty of type B and does not remove the influence of flow regime variation on trends, we recommend that only raw (un-adjusted) trends are reported under S3.30(2)(c).
	5. Because trend assessments are uncertain, we recommend a cautious and staged approach with respect to taking action when deteriorating trends are detected. The staged approach would be triggered by an observed deteriorating trend that is reported under NPS-FM S3.30(2)(c) requirements. Stage 1 should include more detailed analysis of the available data including consideration of flow-adjusted trends or potentially the use of more sophisticated models such as WRTDS or AC’s process-based Freshwater Management Tool (FWMT). The appropriate action at Stage 1 may include taking cautious and proportionate action on the ground and/or potentially increased monitoring effort and ongoing surveillance of possible water quality pressures action. If deteriorating trends continue and/or confidence in the causes of these trends is judged sufficiently high, then stage 2 would be triggered that would involve significant intervention in the catchment to halt and reverse deterioration.
	6. The requirement under NPS-FM S3.30(2)(d) to assess causes of deteriorating trends was not explicitly considered by this study. However, flow-adjustment and flow normalisation (a particular output of the WRTDS model), as undertaken in this study, can be regarded as statistical approaches to removing the influence of flow so the influence of other factors can be more robustly inferred. AC should strive to undertake robust attribution of cause(s) in seeking to carry out the requirements of NPS-FM S3.30(2)(d). However, this is extremely challenging for two reasons. First, suitable data characterising spatio-temporal variation in environmental drivers of water quality are scarce and fragmented. We therefore recommend gathering data describing possible causes of trends, such as changes in land use practices and intensity, changes in point source discharge loads, and adoption of actions in the catchments of monitoring sites and across the Region in general. The second reason NPS-FM S3.30(2)(d) presents a challenge is that water quality is generally influenced by multiple environmental drivers, including anthropogenic drivers such as land use and natural drivers such as climate variability and its impact on flow regimes. There may be additive, compensatory or synergistic interactions among these drivers, making it difficult to reliably attribute water quality responses to specific water quality pressures. The influences can only be elucidated by modelling and models are dependent on there being sufficient sites for the signals (i.e., causes) to rise above the noise. We therefore recommend that monitoring and modelling are treated as equal and mutually informative processes that must work together to fulfil AC’s functions and duties under the RMA and NPS-FM. 
	Glossary
	The table below defines the terms used in this report.
	Definition
	Term
	A specific time period over which the available observations pertaining to a site and water quality variable are used to assess state or trends. In this report, the state assessment period is always 5-years and trends are assessed over periods of 5, 10 and 20 years. 
	Assessment period
	The confidence in the assessed direction of a trend, which is limited due to sample error. Confidence in trend direction indicates the probability that the assessed direction is the same as the true (i.e., population) direction. 
	Confidence
	A statistical process that attempts to remove the influence of instantaneous flow on water quality observations. The purpose is to remove the confounding influence of instantaneous flow in trend analysis. 
	Flow-adjustment
	Variation in characteristics of flows at longer than that of instantaneous flow (see Instantaneous flow). Flow regimes can be characterised by many statistics such as mean and median flows, variability, and seasonality. Variation in these types of statistics at timescales of weeks, months and years are all measures of flow regime variability. Flow regimes vary in response to variation in hydrological processes including precipitation, evaporation and associated storage and release of water from the catchment.
	Flow regime variability
	Flow at a specific point in time, such as when water quality is sampled. In this study the instantaneous flow was quantified by the mean daily flow observed at a nearby river flow gaging station.
	Instantaneous flow
	The exactness of a quantified current or baseline state, which is limited due to sample error. Precision is quantifiable and indicates the range over which we could expect the state to vary if there had been multiple independent sets of samples collected over the same assessment period. 
	Precision
	Uncertainty associated with state and trend assessments that is not quantified by statistical analyses pertaining to evaluation of state and trends from water quality monitoring data. This report identifies two types of unquantified uncertainty, type A and type B. Type A uncertainty pertains to variation that would arise if the assessment was repeated in the future. For state, type A uncertainty is the difference in assessments between five-year assessment periods that is driven by flow regime variability and would occur even if there were no changes in the anthropogenic pressure in a catchment. For trends, type A uncertainty is variation in a trend assessment between assessment periods that occur due to influence of flow regime variability on water quality. type B uncertainty occurs due to differences in assumptions and choices made in the trend modelling process. 
	Unquantified uncertainty of type A and type B
	Sampling error is the difference between a statistic that is calculated from a sample (e.g., a series of water quality observations) and the actual but unknown true value of that statistic (the population parameter). Sampling error is due to the variability inherent among data taken from a population (a statistical sample).
	Sample error
	The state of compulsory NPS-FM attributes as of the 7 September 2017, which is assessed from observations for the preceding five-year period. For the purposes of this report, the period of 1 January 2013 to 31 December 2017 is referred to as the baseline state period although AC may utilise different time frames.
	Baseline state
	Definition
	Term
	The state of an attribute at the time of current reporting, which is based on the observations for the preceding five-year period. For the purposes of this report the period of 1 January 2016 to 31 December 2020 is referred to as the current state.
	Current state
	A statistic calculated from the distribution of observations pertaining to an assessment period that is used to represent the state of freshwater systems in relation to specific values. Several compulsory attributes are defined in Appendix 2A and 2B of the NPS-FM 2020 and the potential numeric range is expressed as four bands (A, B, C and D).
	Attribute
	A representation of reality; cartoons, diagrams, graphs, computer simulations, and statistics and relationships derived from observations are all types of models.
	Model
	A minimum state set for several NPS-FM attributes. States below the NBL are considered degraded (if not due to natural causes) and councils must include actions in their plans that will improve these waterbodies to the NBL or a better state through time.
	National bottom line (NBL)
	1 Introduction
	Assessment of water quality state and trends are requirements of Section 35 of the Resource Management Act (RMA: NZ Government 1991) and the National Policy Statement for Freshwater Management (NPS-FM; MFE 2020). The NPS-FM requires that the baseline state of certain water quality variables (called attributes) is established as an initial step in the National Objectives Framework (NOF) process (S3.10(3)). Baseline states are a basis for setting water quality targets to achieve forward-looking environmental outcomes and objectives. Targets must be set at or above the expressed baseline state (NPS-FM S3.11) (or at or above national bottom lines if the baseline state is below this threshold (S3.11(4) not withstanding several exceptions) (NPS-FM S3.11). Baseline states for attributes defined by the NOF are derived from statistics, such as median values, which are calculated from water quality observations. 
	The NPS-FM also requires that the condition of water bodies is systematically monitored over time (NPS-FM S3.18), and action is taken where monitoring indicates deteriorating trends (NPS-FM S3.19/S3.20). Councils must publish annually data describing attributes and the associated uncertainty of those data (NPS-FM S3.30). In addition, the NPS-FM requires councils to publish comparisons of current and target attribute states (S3.30(2)(b)), assessments of whether target attribute states are being achieved, and if not, whether they are likely to be (S3.30(2)(c)), and assessments of trends and their causes (S3.30(2)(d)). 
	Auckland Council (AC) continues to monitor stream and river water quality at 37 sites across the Auckland region. Water samples are taken on a monthly basis and are analysed for up to 26 water quality variables. The values of the water quality variables that are observed on these sample occasions (i.e., the observations), supplemented with additional monitoring by NIWA at one river water quality site, are the basis for assessment of the current water quality state and trends for streams and rivers in the region (Ingley 2021a; Ingley and Groom 2022).  
	Flow influences water quality in rivers and streams, variation in flow across sampling occasions can be expected to impact to some degree on the assessment of water quality state and how this is changing over time (i.e., trends). For this reason, as well as others (such as water allocation and flood management), flow continues to be monitored at 15-minute intervals at 15 water quality monitoring sites. The flow data provided by this monitoring is important supplementary information in the analysis of water quality state and trends. It is important for AC to consider flow influences attribute state and trends, how to incorporate information about flow into assessment of state and trends, and to ensure that continued monitoring of water quality and flow is consistent with the requirements of the NPS-FM.  It is also important for AC to consider whether assessment of state and trends is consistent with the requirements of the NPS-FM and to be clear about the uncertainties associated with these assessments. AC therefore commissioned this study to provide guidance with respect to how to account for the influence of flow in both the sampling and analysis of water quality data and the implications of this specifically in relation to the requirements of the NPS-FM.    
	The study has proceeded in two steps. First, we undertook a series of analyses to describe flow variation and the influence on state and trend assessment in the Auckland region. These analyses were to:
	1. Assess attribute state for selected attributes based on observed data.
	2. Assess variation in flows between state assessment periods and longer time periods, 
	3. Assess the representation of flow variation by water quality observations
	4. Assess the relationship between water quality variables and instantaneous flow rate. 
	5. Assess the impact on trend assessments of flow-adjustment and alternative plausible flow-adjustments. 
	6. Assess the evolution of water quality state at sites using a modelling approach that elucidates the impact on water quality of flows at timescales longer than that represented by instantaneous flows (referred as the flow regime)
	The second step was to combine the results of the above analyses with our experience and expertise in state and trend assessment to provide guidance for:
	1. Monitoring practice to obtain unbiased estimates of state and assessing and considering uncertainties associated with evaluation of attribute state.
	2. Understanding the causes, and being transparent about, unquantified uncertainty associated with the evaluation of attribute state.
	3. Understanding the causes of, and being transparent about, uncertainties associated with trend assessments.
	4. Understanding, and being transparent about, the need to use models and modelling to make sense of water quality data and to carry out the requirements of the NPS-FM effectively and robustly.
	5. Considerations pertaining to assessments of trends and the requirement to take action where monitoring indicates deterioration and the implications for NPS-FM requirements.
	We also provide commentary on wider issues that are raised by this study with respect to potential changes to sampling frequency of monitoring and to improve spatial coverage. 
	2 Background
	2.1 Assessment of current state
	2.2 Influence of instantaneous flow and flow regime variability on water quality observations
	2.3 Consideration of flow with respect to water quality sampling, state and trend assessment
	2.4 Use of models

	This section outlines four concepts that are used in this study, and which are important to the methods and discussion sections that follow.
	In this study we assess river water quality state for 10 variables including five (of 22) compulsory National Objectives Framework (NOF) attributes defined by the of the NPS-FM (MfE 2020) and two additional urban water quality attributes proposed for the Auckland region - soluble zinc and copper (Ingley 2021b; Ingley and Groom 2021). The approach we have taken to state assessment is set out below. 
	Each table in Appendix 2 of the NPS-FM (2020) represents a NOF attribute (hereafter “attribute) that provides for a particular environmental value (either individually or in combination with other attributes). For example, Appendix 2A, Table 6, defines the nitrate toxicity attribute, which is defined by nitrate-nitrogen concentrations that will, in part so far as concerns nitrate toxicity, ensure an acceptable level of support for “Ecosystem health (Water quality)” values. The state of an attribute at a site is primarily defined by the value of one or more statistics (hereafter numeric attribute state) that are generally percentiles of water observations. For example, for the nitrate-nitrogen attribute there are two numeric attribute states defined by the annual median (i.e., the 50th percentile) and the 95th percentile concentrations. For each attribute, the NPS-FM also defines categorical attribute states in four (or five) “NOF bands”, which are designated A to D (or A to E, in the case of the E. coli attribute). The NOF bands represent a graduated range of support for achieving environmental values from high (A band) to low (D or E band). Narrative descriptions of the level of support for the values are associated with each categorical attribute band. The ranges of the numeric attribute states that define NOF bands are defined in Appendix 2 of the NPS-FM (2020). For most attributes, the D band represents a condition that is recognised nationally as unacceptable (with the threshold between the C and the D band being referred to as a national bottom line (NBL)). In the case of the nitrate (toxicity) and ammonia (toxicity) attributes in the 2020 NPS-FM, the B/C band threshold is the national bottom line, and for the E. coli and DRP attributes, no bottom lines are specified. 
	In our opinion, the primary aim of the NOF bands is to provide a simple shorthand for communities and decision makers to discuss options and aspirations for acceptable water quality and to define objectives. Categorical attribute bands avoid the need to discuss objectives and targets in terms of technically complicated numeric ranges. Each NOF band is associated with a narrative description of the outcomes for values that can be expected if that NOF band is chosen as the objective. However, it is also logical to use NOF bands to provide a grading of the baseline and current state of water quality; either as a starting point for target setting or to track progress toward objectives.
	Water quality observations derived from monitoring are used to assess state. State assessment uses the numeric attribute state (e.g., median or 95th percentile of nitrate-nitrogen concentration) as a compliance statistic. The value of the compliance statistic for a site is calculated from the observations of the relevant water quality variable (e.g., the median value is calculated from the observed nitrate-nitrogen concentrations). Current state can be expressed as a numeric value or a NOF band. A band is assigned by comparing a site’s compliance statistic to the numeric ranges associated with each NOF band (e.g., an annual median nitrate-nitrogen concentration of 1.3 mg/l would be graded as “B-band”, because it lies in the range >1.0 to ≤2.4 mg/l). For attributes with more than one numeric attribute state, bands are defined for each numeric attribute state (e.g., for the nitrate (toxicity) attribute, bands are defined for both the median and 95th percentile concentrations). 
	An important consideration that arises with assessing numeric attribute states and NOF bands from observations is the issue of sampling variability, often referred to as ‘statistical sampling error’. Statistical sampling error means that we never know the true attribute state because we only ever have a finite sample (i.e., a subset of all possible water quality observations) of the true continuous time-series occurring in the river. We know that the attribute state estimated from the sample is sometimes higher than the true value and sometimes lower than the true value. The precision associated with a numeric attribute state indicates how different the true value is likely to be from the estimate and in this study, we represent this by a 95% confidence interval. In the context of assessing attribute states, the precision of the estimate can be understood as the range over which we could expect the assessed state to vary if there had been multiple independent sets of samples taken, all other things being equal (i.e., samples being taken over the same sample period and at the same site). In some places in this report, we use the term “face value” to mean the evaluated numeric attribute state. This is to remind the reader that this value is imprecise. The precision of statistics (such as those used to define numeric attribute states) will increase as number of observations increases but is dependent on the variability of the observations and the number of observations. As a general rule, the rate of increase in the precision of the numeric attribute states slows for sample sizes greater than 30 (i.e., there are diminishing returns on increasing sample size with respect to precision; McBride 2005).
	The NOF is generally not clear whether numeric attribute states apply to percentiles of time or percentiles of samples. McBride (2016) notes that there are significant implications for the number of observations that are required if the former is intended. This is because a percentile of time indicates that the numeric attribute state is regarded to be an estimate of the population statistic. In this case, it is relevant to consider the risk that our estimate is incorrect (e.g., the assigned NOF grade is not exactly the same as the true (population) NOF grade). This risk depends on the precision of the estimated numeric attribute state and whether this is acceptable depends on decisions about the burden-of-proof (i.e., the level of evidence required to demonstrate that the grade is correct). McBride (2016) shows that if a precautionary approach to burden-of-proof is taken (i.e., high confidence the true grade is not worse than the assessed grade) then an appreciably larger sample is required than if an even-handed (i.e., use the face value of the assessed grade) approach is taken. However, for some attributes, the NOF specifies the sampling frequency and duration (e.g., the E. coli attribute state is defined by four statistics that are calculated from three years of monthly observations). This suggests that we can assume that numeric attribute states apply to percentiles of samples, or equally, that we are taking an even-handed approach to the burden-of-proof.
	A further complication that arises with assessing attribute states is that for some attributes, the NOF specifies “annual statistics” (i.e., annual median; annual maximum) for assessing state (e.g., Nitrate and Ammonia Toxicity). This appears to indicate that assessments are made from one year of observations. However, if monitoring was monthly, this would result in only 12 observations and therefore very imprecise estimates of the median and 95th percentile (see below for discussion of assessment precision). In this study, therefore, we have assessed  attribute states by calculating the statistics prescribed by the relevant NOF attribute table (e.g., median, 95th percentile) from records of observations of 5-years duration (hereafter a “state assessment period”) as recommended by McBride (2016) and as generally undertaken by national environmental reporting studies (Larned et al. 2018; Whitehead et al. 2021). We note that this is the approach implemented by AC for previous reporting, and is consistent with the approach taken by Land, Air, Water Aotearoa (LAWA), and analyses undertaken on behalf of the Ministry for the Environment (MFE) and Statistics New Zealand (StatsNZ) (e.g., Larned et al. 2018; Whitehead et al. 2021)
	In the state assessments undertaken in this study, we have evaluated numeric attribute states and their precision (i.e., the uncertainty associated with the sample error). We note that the reported precision is relevant whether the numeric attribute states are regarded as percentiles of time or percentiles of samples, but with different interpretations. If the numeric attribute state applies to the population (i.e., percentiles of time), the precision describes the uncertainty of the assessment of the true state. Alternatively, if the numeric attribute state applies to the sample (i.e., percentiles of samples), the precision can be interpreted as the range over which the sample statistic could be expected to vary if sampling had occurred on different days within the same sampling period. 
	Many water quality measures in rivers and stream are influenced by the instantaneous flow rate (i.e., discharge at the time the sample was taken). In this study, we have used the mean daily flow to represent the discharge at the time the sample was taken. Water quality observations can vary systematically with instantaneous flow due to two kinds of physical processes. Observations may decrease systematically with increasing flow due to the effect of dilution of the contaminant, or increase with increasing flow due to mobilisation (“wash-off”) of the contaminant (Smith et al. 1996). The relationship between water quality measures and instantaneous flow may also depend on the location on the hydrograph when the sample was taken such that concentrations at a given flow rate can differ between the rising and falling limbs. In urban contexts this mechanism is referred to as “first flush” where at the initiation of the rising limb of the hydrograph, concentrations are higher compared to later when the sources of contaminants have been depleted or “washed off” (Lee et al. 2004). 
	Different mechanisms may dominate at different sites so that the same water quality variable can exhibit positive or negative relationships with increasing instantaneous flow. Some water quality variables can be associated with a combination of dilution and wash off with increasing flow. For example, a portion of the suspended sediment load may come from point source discharges such as sewage treatment plants (dilution effect), but another portion may be derived from surface wash-off. Increasing flow in this situation may result in an initial dilution at low flow rates, followed by an increase at higher flow rates (Helsel et al. 2020).
	Relationships between water quality variable observations and instantaneous flow are commonly represented by bivariate (i.e., observation - flow) statistical models (e.g., Helsel et al. 2020; Snelder et al. 2021a). These models are used, in a process called “flow-adjustment”, to remove the confounding influence of instantaneous flow so that the trend in the observations can be more confidently assessed (see Section 4.4). An important assumption underlying these models is that the relationship between the observations and instantaneous flow is constant in time. This assumption simplifies the definition of the model but is likely to be violated in situations where catchment processes associated with the generation, storage, transport and transformation of contaminants are changing (see Section 4.6). 
	Notwithstanding the simplifying assumptions underlying bivariate observation - flow models, selecting the most appropriate statistical model to represent the relationship is complicated for several reasons. First, observation - flow relationships differ between variables at individual sites and between sites for a variable. Second, there is often a trade-off between the goodness-of-fit and the physical plausibility of the relationships represented by models. Simple models such as linear regression will represent physically plausible monotonic increasing or decreasing relationships between observations and flow but these may have poor goodness-of-fit. More complicated models allow for non-linear relationships between observations and flow. These models can represent more complex relationships that may have plausible mechanistic explanations. For example, non-linear models can represent large increases in concentrations of contaminant with increasing flow that could be expected where a threshold of movement of a contaminant is crossed. Non-linear models can represent local maxima that occur if initially increasing concentration with flow is followed by source depletion or dilution at very high flows. However, non-linear models may also represent physically implausible relationships between observations and flow such as multiple local maxima (Snelder et al. 2021a). Care and expert judgment in selecting observation - instantaneous flow models is therefore required and are discussed in Section 4.3.
	Flow also varies at longer than timescales “instantaneous flows” in response to variation in hydrological processes including precipitation, evaporation and associated storage and release of water from the catchment (Sofi et al. 2020). This hydrological variability is manifested as flow regime variation, but also water quality variability because contaminant mobilisation, transport, storage and dilution is affected by the same hydrological processes (Gascuel-Odoux et al. 2010). In this study, we refer to the “flow regime” to mean characteristics of river flows at longer than the daily timescale that we use to indicate instantaneous flow. Flow regimes can be characterised by many flow statistics such as mean and median flows, flow variability and seasonality (Snelder and  Booker 2013). Like instantaneous flows, the flow regime at a site varies over time. For example, periods of uncharacteristically low or high flows can occur at various timescales (e.g., weeks, months and years). 
	Flow regimes are influenced by anthropogenic activities occurring within the catchment such as abstraction and land use changes and are also by influenced by natural processes such ecological succession of land cover from scrub to forest (Best 2019; Chen et al. 2019; Margariti et al. 2019). Flow regimes are also strongly controlled by climatic processes such as precipitation and evaporation (Sofi et al. 2020). For example, effective rainfall (precipitation minus evaporation) drives water storage and release from catchments at timescales of days to years (Wilusz et al. 2017). Irrespective of the cause, flow regime variability is linked to variation in water quality and in study, we undertake analyses to show that link. The link between flow regime variability and water quality variability is important because it impacts on assessments of water quality state and trends. 
	In this study, we do not undertake any analysis of the causes of the flow regime variability. However, some of the analyses we present indicate that water quality oscillates at interannual timescales. These oscillations are evidence that water quality variation is partly attributable to quasi-periodic climate variation such as the El Niño-Southern Oscillation (ENSO; Mullan 1996; Salinger and Mullan 1999). Evidence for the link between ENSO and water quality variation in New Zealand at interannual timescales has been provided by studies of fluctuations in water quality trend assessments at time scales from 5 to 15 years to (Scarsbrook et al. 2003; Snelder et al. 2021b). Therefore, when we refer to the impact of “flow regime variability” on water quality, it is appropriate to consider that climatic variation is at least partly involved. The relevance of climatic variation is that it is factor that cannot be managed but may influence state and trends and can confound determination of the anthropogenic causes of water quality changes. 
	Because the specification of the NOF attributes in the NPS-FM makes no mention of flow, it is reasonable to assume that attribute states, and therefore monitoring data, should represent the full flow range. This makes sense if we consider that the purpose of NOF attributes is to manage the effect of water quality on values such as ecosystem health and human health risk. Because these values are not specific to certain flow states, it is logical that attribute states, and monitoring data, should represent the full flow range. 
	In this regard, we consider that there are different considerations associated with the flow at the time of sampling for state assessments compared to trend analysis. For assessment of attribute state, we assume that the monitoring data should represent the full flow distribution. Therefore, the question is whether the flows represented in the observation data are a reasonable representation of the flow distribution. In principle, this will be true if sampling is punctual. Punctual sampling involves setting the sample frequency and occasion (i.e., date) in advance and then not deviating from this schedule. This will ensure that sampling is random with respect to flow and, as the number of observations increase, the sampled flow distribution will increasingly closely correspond to the actual flow distribution.  
	A complication that arises with assessing attribute states is that there is likely to be hydrological variation between state assessment periods that is manifested as flow regime variation. Because water quality observations are generally influenced by the same processes that influence flow regimes, state assessments can be expected to vary between assessment periods (e.g., between baseline and current state) in association with flow regime variation.  This produces a component of uncertainty in state assessments that is in addition to precision, which we refer to as “unquantified uncertainty of type A”. In attribute state assessments, unquantified uncertainty of type A can be understood as the variation in state between five-year assessment periods that is associated with flow regime variability and would occur even if there were no changes in the anthropogenic pressure in a catchment.
	Trend analysis seeks to quantify the relationship between the water quality observations and time. In this context, flow can be considered a “covariate”; a variable that is also related to the water quality observations but whose influence is confounding the water quality – time relationship that trend analysis seeks to expose. The process of flow-adjusting is used to remove the influence of instantaneous flow on the water quality observations prior to trend analysis. Flow-adjustment has two purposes. First, it theoretically increases the statistical power of the trend assessment (i.e., increase the confidence in the estimate of direction and rate of the trend) by removing some of the variability that is associated with flow. Second, it removes any component of the trend that is attributable to a trend in instantaneous flow (e.g., a trend in the flow on sample occasions such as increasing or decreasing flow with time). However, whether it is appropriate to undertake flow-adjustment depends on the objectives of the trend assessment. If the aim is to understand whether a management action has affected water quality over time, then the contribution of flow to the trend is a confounding factor and flow-adjustment is promoted as a means to increase the confidence in the trend assessment (Snelder et al. 2021a). In contrast, if the aim of the assessment is to quantify the water quality trend that actually occurred, then flow-adjustment may not be applicable. An example where quantification of the actual (unadjusted) trend might be desired is where a biological change has occurred in a stream and there is interest in whether this was associated with changes in water quality variables. 
	In our opinion, irrespective of the purpose of trend assessment and whether this indicates flow-adjustment is required or not, it is desirable that monitoring data should represent the full flow distribution to avoid biased trend assessments. If the purpose is to quantify the water quality trend that actually occurred, then the sample should represent the population as well as possible and therefore samples should be representative of the flow distribution. On the other hand, if flow is regarded as a confounding factor whose influence is to be removed, there is a need to first model the relationship between instantaneous flow and observations (see Section 2.2). In this case it is also desirable that monitoring data represents the full flow distribution. A complication that arises in this case is that, for some water quality variables, there are rapid changes in the flow – observation relationship at high flows. If sampling is punctual, there will be relatively few high flow observations, which impacts on the accuracy of the model at high flows. In addition, there is a strong tendency for observations at high flow to have high variability, which also impacts on the accuracy of the model at high flows. This combination introduces considerable uncertainty and subjectivity into instantaneous flow - observations models, which is described later. 
	Section 1.6 of NPS-FM directs councils “to use best information available” and “in the absence of complete and scientifically robust data, the best information may include information obtained from modelling as well as partial data…”. However, trend analysis involves fitting statistical (regression) models and characterisation of population by calculating summary statistics, such as the median, from a sample involves making statistical assumptions. Therefore, the requirements to assess water quality state and trends are reliant on models and, accordingly, the outputs should be interpreted as being uncertain and influenced by the associated modelling procedures and assumptions. 
	From a technical perspective, numeric attribute states are models of some characteristic of the distribution (e.g., a median describes the characteristic “central tendency” of a data). It is important to recognise the assessed attribute state is a model (i.e., the assessed attribute state is a representation of reality) because that clarifies that the assessment is uncertain; irrespective of whether it is interpreted as applying to the population (i.e., percentiles of time) or the sample (see section 2.1). In this report, we illustrate the uncertainty that is associated with numeric attribute states, provide some commentary on how this impacts the ability to detect change and attribute change to causes and suggest how to respond to the uncertainty.  
	Trend assessment is a process of building a statistical model of the behaviour of a variable over time from a series of observations (Helsel et al. 2020). The model is built from observations pertaining to a site/variable combination that represent a sample of the population (i.e., a sample of the actual conditions over the entire period of interest). The trend is an estimate of what actually occurred, which is subject to ‘statistical sampling error’. Therefore, trend assessments are always associated with quantifications of uncertainty that are analogous to the quantification of precision in assessments of state.
	Like all statistical models, a trend assessment is a simplification of reality that aims to expose the most important features of the true relationship or pattern of interest. The simplest and most salient features of the relationship between a variable and time are the direction and the rate of change in the variable. Although there are accepted methods for trend assessment (e.g., Snelder et al. 2021a), their application automatically implies making assumptions and simplifications. It is important to be aware that quantifications of uncertainty accompanying trend assessments express the combination of the statistical sampling error’ interacting with the mathematical description of the trend represented by the model. This quantified uncertainty does not include the impact of model assumptions and necessary methodological or procedural judgements made by the analyst in performing the trend assessment. These aspects introduce additional uncertainties that are unquantified by the trend assessment. We refer to these uncertainties as “unquantified uncertainty of type B”. In this report we show that unquantified uncertainties associated with trend assessments may be consequential and therefore need to be kept in mind when interpreting and using the results of trend analysis.
	3 Data
	In this study we used stream flow and water quality data pertaining to river and stream state of environment water quality monitoring sites in the Auckland region (Figure 1). Stream flow data (hereafter “flow”) and water quality observation data were provided by the Research and Evaluation Unit (RIMU), Auckland Council) in six files as listed in Table 1.
	Table 1. Flow and water quality data sources.
	The water quality observations file contained data for 37 unique sites that had been collected by AC over the period (1985 to 2020, although individual sites had varying record length). Two sites (Hoteo River (site 45703) and Rangitopuni River (site 7805)) had additional data collected by NIWA (site names “AK1” and “AK2”) that supplemented the Auckland Council data. 
	The water quality data comprised observations of 37 water quality variables on discrete occasions defined by dates. The ten water quality variables that were the focus of this study are shown in Table 2. The observation frequency was generally/approximately monthly at all sites. Hereafter, we refer to discrete observation of a water quality variable as an “observation” and to each date on which an observation occurred as an “observation-date”. 
	The analysis of samples for total oxidised nitrogen concentrations (NNN) has been carried out for many more years than nitrate-nitrogen concentrations (which were initiated by AC in December 2018). Following Ingley (2021b) NNN values have been used as a proxy for nitrate-nitrogen. This assumes that nitrite concentrations are low compared to nitrate concentrations and can be ignored.
	Clarity observations were provided by AC as “Clarity (converted)” values for the purposes of comparison to the suspended fine sediment NOF attribute. These values were calculated from turbidity (NTU) based on Franklin et al. (2019). This national adjustment has not been validated for the Auckland region or specific sites and state assessment is considered provisional until such verification is undertaken. AC also provided pH adjusted ammonia observations as the ammonia toxicity NOF attribute is intended to apply to these adjusted values, rather than ammoniacal N. Following Ingley (2021b), we used pH adjusted ammoniacal nitrogen observations to assess state but the non-adjusted ammoniacal nitrogen in all other analyses. We note that these conversions introduce uncertainty to the provided values (in addition to the measurement and analysis uncertainties). No attempt has been made to include these uncertainty contributions. This study included the metals copper and zinc at some, but not all, sites because monthly water quality samples have only been analysed for metals at all sites since 2018. When reported in this study, metals have not been adjusted for dissolved organic carbon or hardness. 
	Table 2. Water quality variables analysed in this study. 
	Continuous mean daily flow data was provided for 21 of the water quality sites. Flows were measured at the water quality site, or on the same river segment and within 2 km of the sample location. Two sites were discarded. The Matakana site, (site 6604) was discarded because the flow data were derived from a limited number of gauging observations. The Paerata Rise site, (site 43968) was discarded because it had less than 10 years of flow observations. The Newmarket Stream site (site 10814) was discarded because water quality monitoring was only established in 2018. The Okura and Kumeu River sites (7502 and 45313) were discarded because they were closed in 2015. The Oakley Creek site (8110) was discarded because the flow site location was >6km from the water quality site and was therefore considered not sufficiently representative. 
	The remaining 15 sites have been used for analysis (see Figure 1 for locations). The site details, including the names of the related flow measurement sites are listed in 0, Table 8. Auckland Council water quality and flow sites names are often, but not always, the same. For consistency in this report, the water quality site names are used rather than the flow site names. The relationship between the two is provided in 0, Table 8.
	/
	Figure 1. Locations of all of Auckland region’s state of environment river water quality monitoring sites including the 15 paired water quality and flow sites.
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	In this study, we undertook six sets of analyses to describe flow variation and its influence on state and trend assessment in the Auckland region. The methods used in these analyses are set out in the following six subsections.
	1. Assess current attribute states and the precision of these assessments based on the water quality variables shown in Table 2 for the 5-year period ending 2020.
	2. At each site, compare variability in flow regimes between each of four five-year state assessment periods between 2013 and 2020 and to the long-term flow record. 
	3. At each site, compare the instantaneous flow conditions sampled on water quality monitoring occasions for each of four five-year state assessment periods between 2013 and 2020 and describe any bias flow associated with the water quality monitoring observations.
	4. At each site, for each variable, consider flow-adjustment using alternative functional forms for flow-concentration models. Use expert judgement to select the most appropriate model to undertake flow-adjustment and compare the results to those obtained using an alternative “default” flow-concentration model.
	5. Calculate and compare flow-adjusted vs non-adjusted trends for the period 2007-2017 and rolling trends to 2011-2020.
	6. Use an alternative modelling approach to describe observation – flow relationships and trends to those derived using the above methods.
	The details of these analyses are explained in the following sections. 
	We assessed current numeric states for the 5-year period ending 2020 for the following variables, using the following listed statistics and as set out in the remainder of this section:
	 E. coli, using four statistics (exceedances of 540 and 260 E. coli/100 mL, median and 95th percentile). 
	 DRP, using the median and 95th percentile. 
	 Nitrate, using the median and 95th percentile. 
	 Ammonia, using median after adjusting for pH. Because it is not possible to estimate the uncertainty for a maximum value, we have not included it here. 
	 Clarity (converted from turbidity (NTU) representing the suspended fine sediment attribute), using the median. 
	 DIN, reported as the median and 95th percentile 
	 Dissolved Zinc, following Ingley (2021b), numeric attribute state was defined by median and 95th percentiles and categorical attribute state was defined based on Gadd et al. (2019). There was no adjustment for dissolved organic carbon or hardness.
	 Dissolved Copper, as for Zinc
	For each water quality variable at each site, the numeric attribute state (i.e., face value of the relevant statistics described above), NOF band (where applicable) and the 95% confidence interval for the numeric attribute state was calculated for rolling 5-year state assessment periods between 2013 and 2020 (inclusive). An assessment period of five years was used for all variables in the state assessment. This is consistent with the methods used by AC for environmental reporting (Ingley and Groom 2022).
	Medians and 95th percentiles were calculated using the Hazen method. Values at or outside detection limits were retained at the detection limit without imputation. Precision for both percentiles and proportions (i.e., for E. coli, exceedances of 540 and 260 E. coli/100 mL) were estimated based on the method of Wilson (1927) as recommended by Brown et al. (2001) and are expressed as the 95% confidence interval.
	When grading sites based on NPS-FM attributes, it is general practice to define the acceptable proportion of missing observations (i.e., data gaps) and how these are distributed across sample intervals so that site bands are assessed from comparable data (Whitehead et al. 2021). The time period, acceptable proportion of gaps and representation of sample intervals by observations within the time period are commonly referred to as site inclusion or filtering rules (e.g., Larned et al., 2018). In this study, a period of five years was used for state assessment. Some NOF attributes require 5-years of monthly data but more generally, 5 years represents a reasonable trade-off for grading assessments because it yields a sample size of more than 30 observations. The five-year period for the NPS-FM state analyses is consistent with previous national water-quality state analyses (Larned et al. 2018; Whitehead et al. 2021). 
	Because water quality data tend to fluctuate seasonally, it is also important that each season is well-represented over the period of record. AC has sampled river water quality at a monthly frequency for the period under consideration in this analysis and therefore we defined seasons by months. We applied a filtering rule that restricted site and variable combinations in each state assessment period to those with measurements for at least 90% of the sampling intervals in that period (i.e., at least 54 of 60 months). We did not place a restriction on the allowable proportion of gaps for individual seasons because this first requirement (90% of sample intervals) means the potential impact of missing seasonal observations is minimal. Site × variable combinations that did not comply with these rules were excluded from the state analysis. We note that for grading the suspended fine sediment and E. coli attributes, the NPS-FM requires 60 observations over 5 years. For monthly monitoring, this requires collection of all monthly observations (i.e., no missing data). For this study, we relaxed the rule to require observations for 90% of months over the 5-year period (54 observations). Both this relaxation and our default sample number are subjective choices. This is consistent with the methods used by AC for environmental reporting (Ingley and Groom 2022)
	The flow regime for a five-year state assessment period is unlikely to perfectly represent the flow regimes of alternative five-year state assessment periods or the long-term flow regime. An assessment period that is associated with a drought, for instance, will feature more frequent low flows than the long-term flow regime. An assessment period in which rainfall was higher will have higher mean flows and more frequent high flows that the long-term flow regime and the assessment period that was associated with a drought. 
	We quantitatively assessed differences in flow regimes at the time scale of assessment periods and compared these to the long-term flow regime in three steps. First, at each site we calculated the mean flow in every month of record. Second, we calculated the mean of mean monthly flows in each month of the entire record and used this to represent the long-term flow regime. Third, we calculated the mean of mean monthly flows in each 5-year state assessment period between 2013 and 2020 (i.e., four assessment periods ending 2017, 2018, 2019 and 2020) and used these to represent that period’s flow regime. 
	We plotted these data to visualise the variability of flow regimes between assessment periods and the deviation of flows in each assessment period to the long-term flow regime. We did not undertake formal statistical testing of the significance of the differences in flow regimes because it is not clear what type of test would be relevant or what the benefit of statistical confidence in differences would be. However, we performed analyses that combined the water quality data and flows to demonstrate that differences in flows between assessment period contributes to variation in water quality assessments (see Section 4.6). 
	The instantaneous flow at the time of water quality observations were assessed graphically by timeseries plots that depict the super-position of the observations on the flow hydrograph. These plots indicate the distribution of observations over the flow range and variability of flows over time. For water quality variables that are affected by streamflow it is ideal if, for any state assessment period, the distribution of flows on observation dates matches the distribution of all flows in the assessment period. If this is the case, then observations are unbiased with respect to flow. We used flow duration curves (FDC) to graphically assess whether the distribution of flows on observation dates matched the distribution of all flows through the state assessment period. A FDC is a cumulative frequency distribution that shows the percent of time specified discharges were equalled or exceeded during a given period. FDCs indicate the flow characteristics of a stream over the full range of discharge, but with no indication of the sequence of occurrence of the flows. The y-axis of an FDC indicates the flow and the x-axis represents either the rank or the percentage of time that the flow has been exceeded (by scaling the flow ranking from 0% to 100%).
	We assessed whether the distribution of flows on observation dates matched the FDC for rolling 5-year assessment periods between 2013 and 2020 in two steps. First, for each site, we produced FDCs from the daily flows in each 5-year period. Second, for each site, we overplotted these assessment period FDCs with points representing the observation dates. 
	The portion of the FDC outside the ranges of the observation-date flows are of particular interest. Flows that are not represented by observations limit the ability to accurately assess and model the relationship between water quality variables and instantaneous flow (see Section 4.4). In general, we can expect that modelled relationships are less reliable near the end and outside the range of the observation-date flows. Inaccurate representation of water quality observation – instantaneous flow relationships have implications for flow-adjustment (see Section 4.4) and for calculation of contaminant loads (e.g., Snelder et al., 2017). The percentage of the FDC that is within the observation-date flow range provides a measure of the proportion of the time a site’s flow was represented by the observations. The area under the FDC represents the total volume of water passing a flow measurement site. Therefore, the area under the FDC that is represented by observations provides a measure of the proportion of the total volume of flow that is represented by the observations. For each site, we also evaluated the proportion of time, and the proportion of volume, that was represented by the observations for rolling 5-year state assessment periods between 2013 and 2021. 
	We also quantitatively assessed whether there was bias in the representation of the flow distribution at each site by the observations. This assessment used the Kolmogorov-Smirnov test to assess whether the distribution of flows on observation dates matched the distribution of all flows within each five-year assessment period. The Kolmogorov-Smirnov test assesses whether two sets of data are drawn from the same cumulative frequency distribution (CFD). The Kolmogorov-Smirnov test statistic is the maximum discrepancy between the CFDs derived from the two datasets. For our data, this means the largest difference in the proportion of the time a given flow is equalled or exceeded. This statistic can vary between zero (indicating the distributions are exactly the same) or one (indicating there is no overlap between the two distributions). The significance of the test statistic is assessed based on the null hypothesis (Ho) that the two datasets are from the same distribution. If the p-value for the test is less than alpha (which we set at 0.05) the null hypothesis is rejected, and it can be concluded that the two distributions are significantly different. If the p-value for the test is greater than alpha, the null hypothesis is not rejected, and it can be concluded that the two distributions are consistent with the same population distribution. Note that the test can only determine that two distributions are different—it does not indicate whether the change is an increase or decrease in the mean or due to a change in the variance or extremes (Kundzewicz and Robson 2000).
	A complication arises in our analysis due the non-independence of daily flows (i.e., their autocorrelation) that are used to characterise the distribution of all flows. The non-independence of daily flows violates an assumption of the Kolmogorov-Smirnov test that the observations are independent (Lanzante 2021). This results in under-estimation of the variance and therefore under-estimation of the p-value. There are corrections that can be made to adjust for autocorrelation of data in Kolmogorov-Smirnov tests (e.g., Lanzante 2021). However, in this study we were primarily interested in the strength of the evidence that the two distributions are consistent with the same population distribution. We were therefore not concerned about under-estimation of the p-value because this leads to a more conservative assessment of the evidence for the two distributions being consistent with the same population (i.e., we are more likely to reject this). We therefore did not apply any correction to the Kolmogorov-Smirnov test p-value. For each site, we therefore calculated the Kolmogorov-Smirnov test statistic and its significance (Massey 1951) for rolling 5-year state assessment periods between 2013 and 2021. We interpreted the p-values >0.05 for these tests as strong evidence that the distribution of observation-date flows was an unbiased sample of all flows within each five-year assessment period.
	We first assessed the general level of association between water quality observations and instantaneous (daily mean) flow using the non-parametric Kendall rank correlation coefficent (known as Kendall’s tau; 𝜏). Kendall’s tau is a measure of rank correlation; the similarity of the orderings of the data when ranked by each of the quantities (Zar 1999). We used 𝜏 to quantify the level of monotonic association between the water qualtiy observations and their associated instantaneous flows. Kendall’s 𝜏 takes values between -1 and +1; a positive value indicating that the observations increased with increasing instantaneous flow and vice versa. For each site and variable combination, we calculated Kendall’s 𝜏 and plotted the distributions of results over sites for each variable as box and whisker plots to indicate the general level of association between water quality observations and instantaneous flow and the inter-site variability of this association within each variable.
	Flow-adjustment builds a statistical model of the relationships between water quality variable observations and instantaneous flow that is subsquently used to remove the confounding influence of instantaneous flow in trend analysis (Helsel et al. 2020; Snelder et al. 2021a). As mentioned in Section 2.2, expert judgment is required in selecting observation - instantaneous flow models because there are many alternative models and selection of the most appropriate model requires striking a balance between physical plausibility and goodness-of-fit. This means that there is more than one plausible model, which introduces unquantified uncertainties into trend analysis that we refer to in Section 2.4 as unquantified uncertainty of type B. 
	The purpose of the analyses of flow-adjustment in this study was to assess the extent to which selection of model representing the relationship between water quality observations influences the results of trend analysis. We used alternative plausible instantaneous flow - observation models to produce two sets of flow-adjusted water quality observations. We then undertook two sets of trend analyses based on the alternative data and compared the results.
	There are a wide range of statistical regression methods (linear and non-linear) that have been, or could be, used to model the observations - instantaneous flow relationships. In this study we used a range of statistical regression models that have been used in previous studies to represent the observation – instantaneous flow relationship (e.g., Smith et al. 1996; Ballantine and Davies-Colley 2014; Larned et al. 2016). In each case the log (base 10) of flow was used as the independent model variable. The eight models were as follows: 
	1. linear model of untransformed water quality and log of stream flow (LinLog),
	2. linear model of log of water quality and log of stream flow (LogLog),
	3. locally estimated scatterplot smoothing (LOESS) with a span of 0.7 applied to untransfomed water quality and stream flow (LOESS 0.7),
	4. as for 3, but with log of water quality(LOESS 0.7-Log),
	5. LOESS with a span of 0.9 (LOESS 0.9),
	6. as for 5 but with log of water quality (LOESS 0.7-Log),
	7. generalised additive model (GAM) with smoothing spline local fitting ,
	8. as for 7 but with log of water quality (GAM-Log).
	LOESS and GAM models allow more fexible fit to the data and can represent non-linear relationships. For LOESS models, the span refers to the proportion of points that are considered when calculating the weighted local regression at each point. A large span produces a smoother more global fit than a smaller span and a smaller span produces a model that conforms more to the local data. We did not trial LOESS models with spans less than 0.7 because our experience is that these almost always result in implausible modeled relationships. 
	Only site and variable combinations with at least 54 observations were included in this analysis. This limit was chosen because it represents the minimum observations required to conduct a water quality trend assessment for a 5 year period with monthly sample intervals and with the commonly used requirement that observations are available for at least 90% of sample intervals (Whitehead et al. 2021).
	The model goodness-of-fit was assessed using the coefficient of determination (r2) and the model p-value. The model r2 indicates the proportion of the variability in the water quality observations that is explained by (log of) the flow. The model p-value indicates the degree of evidence that the fitted relationship is consistent with the population. Low p-values indicate that the fitted relationship would be unlikely were there no relationship between the observations and flow in the population. 
	To keep all comparisons to site and variable combinations for which an instantaneous flow - observation relationship was considered objectively robust, combinations for which none of the eight possible statistical models had r2 > 20 % and p < 0.01 were discarded. To enable comparison between the models, we always calculated r2 using the raw water quality values and the log of the flow, irrespective of whether the relationship was derived between the log of the water quality variable and the log of the stream flow. The r2 and p thresholds were subjectively chosen. Flow-adjustment of data that does not achieve these thresholds is unlikely to have a noticeable effect on the trend assessment. 
	For all site and variable combinations that met the above criteria, all eight models were considered by the expert. This was aided by producing scatter plots of the data (observation - instantaneous flow) with all eight models super imposed on the plot. In addtion, the r2 and p values for each model were provided. The expert selected the “most suitable” model based on three considerations recommended by Snelder et al. (2021) including: (1) homoscedasticity (constant variance) of the regression residuals, (2) model goodness-of-fit measures and (3) plausibility of the shape of the fitted model. It is noted that homoscedasticity of the regression residuals indicates that the model fits through the central tendency of the data and is not overly influenced by particular values. 
	We used the LOESS 0.9 model to provide an alternative “default model” to that selected by the expert. The purpose of the default model is to provide an alternative flow-adjustment to indicate how sensitive trend analysis results are to this choice. The choice of the LOESS 0.9 model is subjective. In our experience LOESS 0.9 is a reasonable compromise between the purely linear model (i.e., LinLog), which is often unable to represent increasing rates of change in observations at high flows and more flexible models (e.g., LOESS 0.7), which can result in implausible modeled relationships. 
	Flow-adjustment was carried out by subtracting the observed water quality values from the corresponding values predicted by the using the expert-selected and LOESS 0.9 models (i.e., to obtain the model residuals). The model residuals are used as input for flow-adjusted trend assessment. 
	To visualise the impact of flow-adjustment and the temporal variation in the observations, we produced time series plots of two sets of flow-adjusted data and the raw (i.e., non-flow-adjusted). To compare the flow-adjusted and raw time series, we offset the residuals of the adjusted values by the median of the raw observations so that their magnitudes were consistent with the raw values. Note that the offset-residuals may include negative values where the flow-derived water quality estimate is larger than the observed water quality.
	We assessed trends for all 81 site and variable combinations that we had flow-adjusted (see Section 4.4). Trends were assessed for rolling assessment periods of 10 years that increment by one year, starting from 2007-2017 (inclusive) and finishing with 2011-2020 (inclusive). The trend assessment was carried out with both sets of flow-adjusted data (i.e., based on a model selected by an expert and based on the default LOESS 0.9 model see Section 4.4) and the raw (i.e., unadjusted) data.
	To assess variability in trend assessments of differing time-period and duration over the longest possible timescale, we performed rolling 5- 10- and 20-year trend analyses for selected variables for two sites with the longest monitoring records in the Region: Hoteo River (NIWA) and Rangitopuni River (NIWA). We used these sites due to the continuity of record between 1989 and 2020 but note that NIWA has discontinued monitoring at Rangitopuni from 2021 and the continuation of these sites is represented by the AC site Rangitopuni River @ Walkers / 7805. We calculated trends for four relevant water quality variables (NNN, DRP, NH4N, and CLAR) for which there was a continuous record of monthly observations from 1989 to 2020 (inclusive). We note that in these assessments we used measured water clarity rather than calculated from turbidity (see Table 2). Trend assessments were performed for time-periods of 5, 10 and 20 years duration starting in 1990 with time-periods incrementing by one year until the end of 2020 was reached. This resulted in 27, 22 and 12 trend assessment periods of 5, 10 and 20 years duration, respectively. These trend assessments were performed with one set of flow-adjusted data (i.e., based on models selected independently by the expert, see Section 4.4) and the raw (i.e., unadjusted) data.
	Trends were assessed using the methods set out in Whitehead et al. (2021), which for brevity have not been reproduced in their entirety in this report. Briefly, trends were analysed in four steps. 
	 First, we filtered the sites and variable combinations that had been flow-adjusted and, for each trend assessment period, retained those combinations for which there was observations for at least 90% of the sampling intervals in that period. 
	 Second, for each site, variable and assessment period combination, we assessed the seasonality of observations using the Kruskal Wallis test. Where there was a statistically significant difference in the observations grouped by month (Kruskal Wallis test α ≤ 0.05), we categorised the data as seasonal. 
	 Third, for each site, variable and assessment period combination we calculated the trend direction (D) and confidence in this evaluation (C) using either the Seasonal Kendall statistic or the Mann–Kendall statistic; depending on whether the data were seasonal or non-seasonal, respectively (Snelder et al. 2022). 
	 Fourth, for each site, variable and assessment period combination we calculated the rate of change using the Seasonal Sen slope or Sen slope, depending on whether the data were seasonal or non-seasonal, respectively (Snelder et al. 2021a). Sen slopes were expressed as annual values and where appropriate, were expressed as relative annual Sen slopes by dividing by the median value of the observations. Confidence in the assessed rates of change were expressed as the 90% confidence interval of the Sen slope. 
	The impact of choices made in the flow-adjustment process on the evaluated trends were assessed by comparing the two sets of flow adjusted trends for the 2011 – 2020 assessment period. The trends assessed from the raw data (i.e., not flow-adjusted) were also compared to the flow-adjusted trends that were based on models selected independently by the expert to assess the impact of flow-adjustment on the trend assessments. 
	Trend assessment results were compared graphically using scatter plots of confidence the trend direction was decreasing and Sen slopes. Confidence the trend direction was decreasing was calculated from the assessed confidence in trend direction as:
	𝐶𝑑= 𝐶            𝑖𝑓 𝐷= 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 1−𝐶   𝑖𝑓 𝐷= 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  
	In graphical reporting of some trend assessments in this report, we express 𝐶𝑑    categorically using the same simplified classification system (outlined in Table 3) used by Land Air Water Aotearoa (LAWA): 
	Table 3. Level of confidence categories used to convey confidence trend direction was decreasing.
	Range in 𝐶𝑑
	Categorical level of confidence the trend was decreasing
	0.90 – 1.0
	Very likely
	0.67 – 0.90
	Likely
	0.33 – 0.67
	As likely as not
	0.10 - 0.33
	Unlikely
	0 – 0.1
	Very unlikely
	The methods for describing observation – flow relationships and trends (i.e., observation – time relationships) described above make simplifying assumptions. While these methods are accepted practice, the impact of these simplifications need to be kept in mind when the outputs are used in decision-making. Three of the most obvious simplifications are:
	1. the models fitted to the observation – flow data for each variable-site combination represent a bivariate characterisation of an assumed general water quality-flow relationship that remains equally applicable throughout the period of record regardless of season or antecedent flow conditions,
	2. the trend assessment method assumes that the seasonal pattern in the data is repeated annually and remains the same throughout the period of record, 
	3. the trend assessment method assumes a specific (monotonic) functional form for the relationship between observations and time.
	The first and second simplifications imply that the mathematical shape or form of the observation – flow relationship remains constant over the record. If we consider that conditions in the catchment have changed over time and that these changes have influenced water quality (e.g., urbanisation, changes in land management, changes in flow regime due to increased water use), then this assumption may not be reasonable and may contribute to uncertainty in assessments made using the model. 
	The third simplification implies that trend analyses can only detect monotonic (i.e., increasing or decreasing) trends over the time-period being assessed. This limitation will mean that cyclic temporal patterns and trend reversals will not be detected.  
	To provide alternative descriptions of observation – flow relationships and trends to those derived using the methods described above, we fitted models to selected water quality data at two sites in the Region using the Weighted Regression on Time, Discharge, and Season (WRTDS) method (Hirsch et al. 2010). The WRTDS method provides for considerable flexibility in representing the long-term trend, seasonal components, and discharge-related components of the behaviour of the water-quality variable of interest. However, this flexibility comes at the expense of requiring more data. Fitting a WRTDS model requires that the number of samples collected at the sampling site is more than 200 and the period of sample collection is at least 20 years. In addition, model fitting requires a complete record of daily flow values for the site over the entire period being modelled. 
	The WRTDS method expresses concentration as a function of time, discharge, and season with the following form:
	𝑙𝑛𝐶= 𝛽0+ 𝛽1𝑙𝑛𝑄+𝛽2𝑡𝑖+𝛽3𝑠𝑖𝑛2𝜋𝑡+𝛽4𝑐𝑜𝑠2𝜋𝑡+𝜀
	where, 𝐶 is the predicted concentration of the water quality variable, 𝑄 is the flow rate, the 𝛽 values are fitted parameters, 𝑡 is the time in years and 𝜀 is the unexplained variation. The functional form is linear in t, linear in ln(Q), and sinusoidal on an annual period (i.e., season). However, the method of fitting the model means that the parameter values are not constant throughout the entire domain of the data but vary over the explanatory variable space defined by 𝑄 and 𝑡. This is achieved by weighting the observations based on their relevance to the point in the explanatory variable space being considered (referred to by Hirsch et al. 2010 as an estimation point 𝑄0, 𝑇0). Thus, observations that are close to 𝑄0, 𝑇0 have a strong influence on the parameter values at that point in the explanatory variable space and the influence decreases the further the observation is from the estimation point. This approach has the following advantages over the methods described above:
	1. The observation – flow relationship is allowed to change smoothly over time.  
	2. The trend component is not constrained to be any particular functional form and is allowed to change smoothly over time. 
	3. There is no assumption that the seasonal pattern repeats but rather the shape of the seasonal pattern is allowed to change smoothly over time. 
	These advantages mean that a WRTDS model can detect and fit both long term (secular) trend, short term fluctuations, as well as cyclic seasonal variability that evolves over time. Collectively this allows for more realistic representation of how water quality changes and increases the potential to understand the drivers of change.
	A WRTDS model includes a ‘‘flow-normalisation’’ procedure that has a similar motivation to flow-adjustment; to remove the association between water quality and flow regime variation that happen to have occurred during the monitoring period and thereby describe the water quality outcome that would have occurred under “average” flow regime. The weighted regression approach to fitting a WRTDS model means “flow-normalised” predictions are not simply adjustments for instantaneous flows but account for flow regime variability in water quality at longer timescales. 
	The performance of a fitted WRTDS model is assessed using “leave-one-out cross validation” (Hirsch and De Cicco 2015). This procedure leaves one observation out of the fitting dataset, fits a model to the remaining observations and uses that model to estimate the concentration for the left-out observation. This step is repeated for all observations in the dataset producing a set of independent predictions for each observation. These independent predictions can be used to quantify various measures of model performance (Hirsch and De Cicco 2015). In this study, we fitted a linear regression of the observations against the predictions and used the R2 value of this regression to describe the performance of the model. We note that WRTDS can also be used to assess trends by assessing the magnitude and significance of differences in predicted concentrations between dates of interest (Hirsch et al. 2015). However, we did not make use of this capability of WRTDS in this study.
	We fitted WRTDS models to the two sites with the longest and most consistent monitoring records in the Region: Hoteo River (NIWA) and Rangitopuni River (NIWA). We fitted models to four relevant water quality variables (NNN, DRP, NH4N, and CLAR) for which there was a continuous record of monthly observations from 1989 to 2020 (inclusive). These assessments used measured water clarity rather than calculated from turbidity (see Table 2). Note that we also assessed rolling 5- and 10-year trends for these site variable combinations as described in Section 4.5.
	We produced several types of graphical output from these models and examined these to assess whether:
	 the modelled evolution of water quality state indicates a combination of long term (secular) trend and short-term fluctuations?
	 the modelled observation –flow relationships change over time?
	 the modelled observation –flow relationships differ between seasons? 
	In addition, we examined whether short term fluctuations were reduced when the model was used to generate flow-normalised concentration predictions and whether assessments of water quality state made using the monitoring data were consistent with the flow normalised predictions made by the WRTDS models
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	Assessments of current state for attributes considered here for the five-year period ending 2020 and the precision of these estimates expressed as 95% confidence intervals are shown Figure 2 to Figure 5. Supplementary data with the results of trend analyses pertaining to rolling 5-year state assessment periods between 2013 and 2020 are provided in WhatFile.xlsx. 
	The width of the confidence intervals, compared to the difference between adjacent NOF attribute band thresholds, differed by variable and statistic. For some variables and statistic combinations, the width of the confidence intervals was small compared to the difference between adjacent NOF band thresholds. For example, for the nitrate median metric, the 95% confidence interval was entirely contained within the A Band for most sites (Figure 2). In contrast, for DRP 95th percentile, the 95% confidence interval often extended over two, three or even four bands (Figure 3). Other than for pH adjusted ammonia and nitrate (Figure 2), at most sites, the 95% confidence intervals for most combinations of statistics and variables, extended over more than one NOF band. 
	/
	Figure 2. Attribute state of pH adjusted ammonia and nitrate concentrations for the 2016-2020 period. 
	/
	Figure 3. Attribute state of DRP concentrations and clarity for the 2016-2020 period.  
	/
	Figure 4. Attribute state of E. coli for the 2016-2020 period. N
	/
	Figure 5. Attribute state of Copper and Zinc concentrations for the 2016-2020 period. 
	At all 15 sites, flow regimes differed between assessment periods and were different to the long-term flow regime (Figure 6). At many sites, mean flows in the four assessment periods were higher than the long-term flow regime between approximately February and May and flows between approximately September and December were lower than the long-term flow regime.  However, patterns of differences between the four assessment periods and the long-term flow regime varied between sites. For example, mean flows in the four assessment periods were lower than the long-term flow regime between approximately February and May for the Vaughan Stream, West Hoe Stream and Kaukapakapa River. There were also marked differences in flow regimes between assessment periods within sites. For example, at many sites, mean flows were higher in September for the assessment period ending 2017 than other assessment periods and this assessment period was generally associated with lower flows than other assessment periods between approximately January and May (Figure 6). Overall, the plots indicate that there is considerable variability in mean monthly flows between assessment periods.
	/
	Figure 6. Flow regimes in assessment periods and the long-term flow regime at each site.  
	Figure 7 is an example flow timeseries (hydrograph) for the Oteha Stream between 2013 and 2021 with the water quality observations super-imposed. Most observations occur at low flows but some represent higher flows, especially between 2019 and 2020. Hydrographs for all the sites are provided in Appendix B, Figure 32.
	/
	Figure 7. Oteha Stream hydrograph based on mean daily flow (black line) and superimposed observation-dates (maroon dots).
	The flow distribution curve (FDC) for Oteha Stream between 2013 and 2020 is shown in Figure 8 with the corresponding water quality observations superimposed. For the Oteha Stream site, observations generally occurred across the flow range but 83% and 41% of the observations occur at flows that are lower than the mean and median flows; respectively. Therefore, a relatively small proportion of the observations represent high flows (i.e., > mean flow).
	/
	Figure 8. Oteha Stream flow duration curve 
	Figure 9 shows FDCs with overplotted water quality observations for each of the sites for the 2013 to 2020 period. These plots indicate that there is between-site variation in how well the water quality observations represent the full distribution of flows. Some sites (e.g., Opanuku Stream) have observation-date flows covering most of the flow distribution. Many of the sites do not have observations at high flows as indicated by the exposed (black line) at the high flow (i.e., left-hand side) of the FDC. 
	//
	Figure 9. Flow duration curves for each site for the 2013 to 2020 period. 
	Figure 10 shows FDCs for the Oteha Stream for 5-year assessment periods between 2013 and 2020 with the corresponding water quality observations super-imposed. For each assessment period, the water quality observations generally represent most of the flow distribution. 
	Table 4 lists the percentage of flow range and volume represented by the observations for each site and 5-year assessment period. On average, flows on water quality observation-dates in the five-year assessment periods represented 96% of the range of flows in the period. Water quality observation-dates best represented the flow range in the 2013 to 2017 period when, on average observations represented 97% of the flow range. Several sites had 5-year periods when observations represented 99% of the flow range. The least representative water quality observations were for West Hoe Stream for the 2014 to 2018 and 2015 to 2019 periods when observations represented only 91% of the flow range.
	On average, 76% of the stream flow volume is within the observation-date flow range (Table 4). This is lower than the proportion of the flow range that is represented by the observations because the volume attributable to a given range of flows is equal to the area under the FDC that pertains to that range. Therefore, the high-flows that are not represented by the observations, account for a disproportionately large amount of total volume of water passing a flow station. Water quality observation-dates best represented the flow volume for the 2016 to 2020 period when 78% of the volume was represented by observations. The least representative water quality observations were for 2014 to 2019 when only 63% of the flow volume was represented by observations. Note that the worst representative period from a volume perspective can be different to the worst from a time perspective if the missing high flows from each period are of different magnitudes.
	/
	Figure 10. Oteha Stream flow duration curves for each 5-year period. 
	Table 4. Proportion of time or volume of streamflow that was represented by water quality observations for rolling 5-year periods between 2013 and 2020. Periods without at least 90 % of flows (>1642 days) or samples (> 53) are omitted
	2016 to 2020
	2015 to 2019
	2014 to 2018
	2013 to 2017
	Site
	Vol
	Time
	Vol
	Time
	Vol
	Time
	Vol
	Time
	78
	96
	77
	96
	73
	96
	76
	97
	Average of all sites
	81
	95
	82
	98
	77
	97
	71
	97
	Hoteo River (45703)
	-
	-
	-
	-
	59
	95
	61
	94
	Mahurangi River (Warkworth) (6804)
	67
	93
	67
	91
	63
	91
	71
	95
	West Hoe Stream (7206)
	61
	93
	62
	95
	74
	98
	73
	97
	Kaukapakapa River (45415)
	-
	-
	-
	-
	-
	-
	58
	95
	Vaughan Stream (7506)
	73
	98
	65
	96
	50
	92
	72
	97
	Lucas Creek (7830)
	82
	97
	71
	97
	54
	93
	77
	97
	Oteha River (7811)
	83
	99
	82
	99
	82
	99
	70
	97
	Rangitopuni River (7805)
	93
	99
	94
	99
	92
	99
	93
	99
	Opanuku Stream (7904)
	85
	97
	86
	98
	85
	98
	91
	99
	Otara Creek (East) (8205)
	76
	97
	75
	96
	74
	94
	78
	97
	Puhinui Stream (43807)
	82
	98
	81
	96
	80
	97
	82
	98
	Wairoa River (8516)
	82
	99
	82
	98
	81
	98
	87
	99
	Papakura Stream (Lower) (43856)
	72
	94
	75
	95
	76
	95
	79
	96
	Ngakoroa Stream (43829)
	73
	95
	75
	95
	75
	96
	76
	96
	Waitangi Stream (43601)
	The results of the Kolmogorov-Smirnov tests of differences between the flow distributions (i.e., FDCs) pertaining to state assessment periods to the corresponding distribution of flows associated with observations are shown in Table 5. These tests indicate that in all cases the p-value is greater than 0.05, which conservatively indicates that the null hypothesis is not rejected (because any autocorrelation in the data leads to under-estimation of the p-value). The conclusion from this is that the distribution of flows on sampling occasions are always consistent with the full flow distribution and therefore the samples are not biased with respect to flow. 
	Table 5. Kolmogorov-Smirnov statistics comparing five-year observation-date flow distributions to the FDC for the whole the assessment period. 
	2020
	2019
	2018
	2017
	Site
	0.06
	0.06
	0.07
	0.08
	Hoteo River (45703)
	0.10
	0.08
	0.11
	0.10
	Mahurangi River (Warkworth) (6804)
	0.09
	0.10
	0.09
	0.08
	West Hoe Stream (7206)
	0.09
	0.09
	0.12
	0.13
	Kaukapakapa River (45415)
	0.08
	0.09
	0.09
	0.07
	Vaughan Stream (7506)
	0.09
	0.09
	0.09
	0.08
	Lucas Creek (7830)
	0.11
	0.13
	0.10
	0.11
	Oteha River (7811)
	0.05
	0.07
	0.07
	0.06
	Rangitopuni River (7805)
	0.09
	0.09
	0.14
	0.16
	Opanuku Stream (7904)
	0.11
	0.12
	0.09
	0.10
	Otara Creek (East) (8205)
	0.09
	0.10
	0.10
	0.08
	Puhinui Stream (43807)
	0.07
	0.06
	0.07
	0.09
	Wairoa River (8516)
	0.07
	0.04
	0.07
	0.06
	Papakura Stream (Lower) (43856)
	0.06
	0.06
	0.06
	0.06
	Ngakoroa Stream (43829)
	0.06
	0.06
	0.07
	0.06
	Waitangi Stream (43601)
	The 10 water quality variables (Table 2) were generally monotonically associated with instantaneous flow as indicated by Kendall’s 𝜏 (Figure 11). Observations of forms of nitrogen (NNN, and TN) were most strongly associated with instantaneous flow and DRP was least associated. Observations could be positively or negatively associated with flow but were predominantly positive for concentrations and negative for CLAR. The associations reflect generally increasing concentrations with flow. For CLAR, the association is reversed because visual clarity decreases with increasing concentrations of particulate material in the water column. 
	/
	Figure 11. Box and whisker plots showing the distributions of Kendall’s 𝜏 measuring the correlation between observations and instantaneous flow at each site by variable. T
	Of the 202 site-variable combinations that had a sufficient number of observations for flow-adjustment, 81 combinations were considered objectively robust (i.e., had observation – instantaneous flow models with r2 values greater than 0.2 and p values < 0.01). These 81 combinations are detailed in Appendix D Table 9, and were investigated further. 
	Flow and water quality data from the Wairoa River (site 8516) are used below as an example of modelled relationships between water quality and flow. Plots of instantaneous flow - NNN concentration relationship for the Wairoa River are shown in Figure 12. Observations are predominantly at low flows with few observations at higher flows (e.g., > 10 m3/s). Note that a log (base 10) transformation of the flow axis spreads the sample values more evenly across the range of flows and displays the relationship between concentration and flow in a more linear fashion (Figure 12, right hand side). For the remainder of plots presented in this section, the flow axes are log transformed. 
	/
	Figure 12. Plots of NNN vs flow for Wairoa River 
	The r2 values for each of the eight potential instantaneous flow - observation models and variable (Table 2) combinations for the Wairoa River site are shown Table 6. Some of the models pertaining to ZN and two DRP models had r2< 20% and p-values > of 0.01. This indicates that we consider that there is insufficient statistical support for the instantaneous flow - observation relationships represented by these models. 
	Table 6. Fitted r2 for instantaneous flow - observation for the Wairoa River site. Model fits with p < 0.01 are indicated by bold text.
	E. coli
	Fitting models
	ZN
	CU
	TP
	TN
	DRP
	NNN
	DIN
	NH4N
	CLAR
	0.03
	0.2
	0.19
	0.67
	0.03
	0.61
	0.61
	0.11
	0.61
	0.65
	GAM
	0
	0.2
	0.19
	0.67
	0.03
	0.6
	0.61
	0.11
	0.74
	0.65
	GAM-Log
	0.02
	0.2
	0.19
	0.67
	0.03
	0.61
	0.62
	0.11
	0.6
	0.65
	LOESS 0.7
	0
	0.2
	0.19
	0.66
	0.03
	0.61
	0.61
	0.11
	0.75
	0.65
	LOESS 0.7-Log
	0.02
	0.2
	0.19
	0.66
	0.03
	0.61
	0.61
	0.11
	0.56
	0.65
	LOESS 0.9
	0
	0.19
	0.19
	0.65
	0.03
	0.6
	0.61
	0.1
	0.75
	0.65
	LOESS 0.9-Log
	0
	0.16
	0.1
	0.64
	0.01
	0.57
	0.58
	0.09
	0.14
	0.59
	LinLog
	0
	0.16
	0.12
	0.63
	0.01
	0.16
	0.21
	0.1
	0.21
	0.65
	LogLog
	Figure 13 shows the eight models fitted to the NNN concentration observation - instantaneous flow data for Wairoa River. All models are highly significant and all but one have r2 > 60%. Although the fitted relationships are reasonably similar, they deviate from each other appreciably at high flows. For example, the LOESS models indicate that NNN decreases at high flows, representing dilution. In contrast the linear models indicate continuing increases in NNN at high flows and the GAM models indicate a plateau occurs. The differences in these models would produce appreciable differences in the residual values for the high flows and these differences would therefore impact on the results of trend assessments. The difficulty in choosing the “right” model is that most are plausible but confidence in the model fits at high flows is low due to the limited numbers of observations and increasing variability in concentration at high flows. 
	/
	Figure 13. Fitted models representing the instantaneous flow - NNN concentration relationship for the Wairoa River site.
	Figure 14 shows the observation - instantaneous flow relationships for ten water quality variables (Table 2) for the Wairoa site. The relationships represented by the eight fitted models are represented as lines in Figure 14. The plots in Figure 14 indicate that DRP and ZN have no obvious relationship with flow (as also indicated by Table 6). For the remaining variables, most of the fitted models appear to be plausible but there are appreciable differences in these models at high flows that would impact on the results of trend assessments. As noted above for the NNN concentration - instantaneous flow model, the difficulty in choosing the “most suitable” model is that most are plausible but confidence in the model fits at high flows is low due to the limited numbers of observations and increasing variability in concentration at high flows. 
	/
	Figure 14. Fitted models representing the observation - instantaneous flow relationships for 10 water quality variables for the Wairoa River site. 
	Figure 15 summarises the type of model that was identified as the most suitable model for flow-adjustment by expert opinion for each of the 81 site-variable combinations that were considered objectively robust and investigated further. Appendix D Table 9 provides a complete list of the models chosen by expert opinion. The plots used for the subjective model selection are provided in a supplementary information file: ReasonableSiteVariablePlots.pdf. 
	/
	Figure 15. Summary of the choices of model used to represent the observation -instantaneous flow relationship for the 81 site-variable combinations that were considered objectively robust.  
	Figure 16 shows the effect of flow-adjustment based on the Linear-Log (LinLog) model for TN observations for the Wairoa River site. The effect of flow-adjustment on the data is visible as the flow-adjusted values are no longer increasing with flow. 
	/
	Figure 16. Effect of flow-adjustment of TN concentrations for the Wairoa River site.  
	Figure 17 shows the time series of NNN observations for the Wairoa River sites as measured (i.e., raw values) and after flow-adjustment based on two concentration – instantaneous flow models. Figure 12 shows the concentration –- instantaneous flow model that was used to perform the flow-adjustment seen in Figure 17. Concentrations are more variable in the early part of the time series (i.e., prior to approximately 2010) compared with the later years, but the flow-adjusted concentrations are less variable that the raw data, which is consistent with one of the aims of flow-adjustment. 
	Figure 17 indicates that overall, there are only small differences between the two sets of flow-adjusted observations. However, these differences are more obvious for high flow observations where the two contrasted models (LinLog and LOESS 0.9) most deviate from each other (Figure 12 note red points indicate flows > 8 m3/s). The red points indicate that the magnitudes of the flow-adjusted data differ between the two flow-adjustment methods. This means these high flow observations, in particular, will contribute differently to the trend analysis and the trend results can be expected to be differ between the two sets of flow-adjusted data. 
	/
	Figure 17. Time series of NNN at Wairoa River as observed and after flow-adjustment.  
	The impact of the flow-adjustment, where this was considered appropriate based on the criteria set out in Section 4.4, on the trend assessment is presented in Figure 18. Flow-adjusted trend rates differed from their raw counterparts as indicated by the scatter of points away from the one-to-one line in Figure 18. There were also differences in the assignment of sites to categories indicating confidence the trend was decreasing (Figure 19). Figure 18 and Figure 19 indicate that direction of assessed trends can differ between trends based on raw and flow-adjusted data. For example, for TN, a site was categorised as “Very likely” decreasing for the assessment based on the raw observations and “Unlikely” decreasing (and therefore “Likely” increasing) for the assessment based on the flow-adjusted observations (Figure 19). These differences are expected outcomes based on the purpose of flow-adjustment.
	/
	Figure 18. Annual relative Sen slope for trends (2011-2020) calculated from raw and flow-adjusted observations. E
	/
	Figure 19. Comparison of confidence that trends (2011 – 2020) were decreasing for trends calculated from raw and flow-adjusted observations. T
	The impact of the flow-adjustment method (i.e., the choice of model used to represent the instantaneous flow – observation relationship) on the assessed trend rate (expressed as an annual relative Sen slope) is shown in Figure 20. The deviation of the points from the one-to-one line in these plots indicate that assessments of trend rate are sensitive to the method of flow-adjustment. The deviation of the two sets of flow-adjusted trends is less than that of the raw versus flow-adjusted trends but is nevertheless appreciable (i.e., compare Figure 20 with Figure 18). This indicates that choices made in the flow-adjustment process impact on the evaluated trends. 
	Differences in flow-adjustment methods also produced disagreements in the assignment of sites to categories expressing confidence in trend direction (Figure 21). For example, for DIN, two sites that were categorised as “Unlikely” decreasing for the assessment based on the LOESS 0.9 flow-adjusted observations were categorised “As likely as not” and “Very unlikely” based on the expert-based flow-adjusted observations (Figure 19). The disagreements in the assignment of sites to confidence categories produced by comparing trends assessed using different flow-adjustment methods were not as large as those produced by comparing raw and flow-adjusted trends (i.e., compare Figure 19 with Figure 21). However, the differences in confidence categories produced by comparing trends assessed using different flow-adjustment methods were appreciable indicating that choices made in the flow-adjustment process impact of on the evaluated trends.
	/ 
	Figure 20. Annual relative Sen slope for trends calculated from flow-adjustment of observations based on expert-selected model versus using a default LOESS 0.9 model. E
	/
	Figure 21. Comparison of confidence that trends were decreasing for trends calculated from using expert-based flow-adjustment and using LOESS-based flow-adjustment. T
	Raw and flow-adjusted trend assessments of rolling time-periods of 5- 10- and 20-year duration for the Hoteo River and Rangitopuni River sites and for CLAR, DIN, DRP and NH4N are shown in Figure 22 to Figure 27. For each variable, Sen slope and confidence the trend was decreasing (𝐶𝑑) tended to oscillate between time periods for all three durations. Within a variable, the magnitude of changes in Sen slopes between adjacent time periods decreased with increasing time window duration (Figure 22, Figure 24, Figure 26). For example, for CLAR at the Hoteo river site, Sen slopes varied between approximately -0.2 and 0.2 m year-1 for the 5-year duration, -0.05 and 0.1 m year-1 for the 10-year duration and -0.02 and 0.04 m year-1 for the 20-year duration. For the 5-year duration, there were frequent changes in the direction of trends between time periods that were separated by only one or two years. For example, for the 27 individual 5-year duration assessments of CLAR trends for the Hoteo river site, there were three groups of end years with “Very likely” decreasing trends that were separated by groups of end years with “Very unlikely” decreasing trends (Figure 23). This oscillation in trend over periods of approximately 5 years is also seen in the Sen slope assessment (Figure 22). Changes in direction of site trends were less frequent for the 10-year time-period duration (Figure 25) and less frequent again for the 20-year time period duration (Figure 27).
	Although there were small differences in the assessed Sen slope and confidence the trend was decreasing (𝐶𝑑) between the raw and flow-adjusted trends, the magnitude and frequency of oscillations were not appreciably different. This indicates that if the driver of the oscillations is hydrological processes, their effect is not removed by flow-adjustment. 
	/
	Figure 22. Rolling 5-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites (NIWA, NWQN) for the period from 1990 to 2020. 
	/
	Figure 23. Rolling 5-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 to 2020. 
	/
	Figure 24. Rolling 10-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 to 2020. 
	/
	Figure 25. Rolling 10-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites (NIWA, NWQN) for the period from 1990 to 2020. 
	/
	Figure 26. Rolling 20-year Sen slopes for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 to 2020. 
	/
	Figure 27. Rolling 20-year confidence in trend direction for four water quality variables for the Hoteo River and Rangitopuni River sites for the period from 1990 to 2020. 
	The weighted regression on time, discharge, and season (WRTDS) models of CLAR, NNN, DRP and NH4N for the Hoteo and Rangitopuni monitoring sites had R2 values between 0.5 and 0.83. Based on the evaluation criteria of Moriasi et al. (2015) water quality models with R2 values of >0.3 are satisfactory, >0.6 are good and >0.7 are very good. Therefore, all models were at least satisfactory, and some were very good (Table 7). 
	Table 7. Cross validated model R2 values for WRTDS models of selected variables for the Hoteo and Rangitopuni monitoring sites. 
	R2
	Variable
	Site
	0.83
	CLAR
	0.77
	NNN
	Hoteo
	0.50
	DRP
	0.70
	NH4N
	0.79
	CLAR
	0.83
	NNN
	Rangitopuni
	0.53
	DRP
	0.52
	NH4N
	The predicted daily values of the four water quality variables at both sites are shown in Figure 28 along with the observations. The blue line indicates the seasonal rolling mean (i.e., moving average at the seasonal timescale), which smooths some of the daily variability. The seasonal rolling mean highlights two features of the predictions. First, there is generally a strong seasonal pattern in the data, and the amplitude of this pattern is often variable over time. For example, CLAR at the Hoteo site had a large range in 2020 compared to 2018. Second, mean concentrations are highly variable at the annual time scale and there are fluctuations in the mean values of variables at the interannual time scale. For example, NH4N at the Hoteo site was generally lower in the period from 2004 to 2007 compared to the earlier period 2001 to 2003 and the later period from 2008 to 2010 (Figure 28). 
	/
	Figure 28. Concentrations of CLAR, DIN, DRP and NH4N for the Hoteo and Rangitopuni monitoring sites predicted by the WRTDS models. T
	Examples of the observation – flow relationships fitted by WRTDS for different dates are shown in Figure 29. These plots indicate that the WRTDS model has detected and fitted appreciably differing observation – flow relationships for different dates for some site and variable combinations. For example, Figure 29 shows that NNN concentrations at the Hoteo site were consistently higher at a given discharge in 2000 compared to the later years (2009 and 2019). 
	/
	Figure 29. Examples of observation – flow relationships fitted by the WRTDS models for a fixed day in three different years.  
	Examples of the observation – flow relationships fitted by WRTDS for different seasons within the same year are shown in Figure 30. These plots indicate that the WRTDS model has detected and fitted appreciably differing observation – flow relationships for different seasons for some site and variable combinations. For example, Figure 30 shows that NNN concentrations were consistently higher at a given discharge in winter (indicated by 2019-06-01) compared to spring and summer (indicated by 2019-10-01 and 2019-02-01, respectively). 
	/
	Figure 30. Examples of fitted observation – flow relationships on different days, representing seasons (summer (red), winter (green) and spring (blue)), in the same year (2019). 
	Comparisons of observed and predicted water quality state (as median values and the precision of those estimates) for rolling five-year periods ending 2020 are shown for the four water quality variables at both sites in Figure 31. The plots show the rolling 5-year median values based on the daily values predicted by the WRTDS model and the rolling 5-year median flow standardised values (also predicted by the WRTDS model). The predictions obtained from the WRTDS models highlight three features of the data. First, most site and variable combinations exhibit secular (i.e., long term) trends through the whole record. For example, over the whole period between 1994 and 2020, CLAR increased, and NNN and DRP decreased at both sites (i.e., improving trends across these variables). The secular trends indicated by the WRTDS models are consistent with the trend assessments for the 20-years duration reported in Section 5.2.2. For example, for most 20-year trend assessment periods, there were increasing trends for CLAR, and decreasing trends for DIN and DRP (Figure 26 and Figure 27).
	The second feature of the data highlighted by the WRTDS models is that the predicted median values oscillated through the period. For example, predicted median NH4N at the Hoteo site was lower in the period from 2001 to 2003 compared to the period 2004 to 2006 and was again lower in the period from 2009 to 2011. The oscillations in state indicated by the WRTDS models are consistent with the trend assessments for the 5-years duration reported in Section Error! Reference source not found.5.2.2. For example, for the 5-year trend assessment periods, trend rates and directions for all four variables oscillated with an approximate duration of a full cycle being six to seven years (Figure 22 and Figure 23).
	The third feature of the data highlighted by the WRTDS models is that flow normalised median values (blue lines on Figure 31) exhibit appreciably less oscillation than the medians derived from the predicted values and the median values calculated from the water quality observations. For example, while there was a secular decreasing trend over the whole period for DRP at the Hoteo site, values were higher in succeeding years on several occasions through the period. For the Rangitopuni site, predicted DRP and the calculated DRP median face values also oscillated appreciably so that state changed between the NOF D band and C band several times over the period of record. In contrast, at both sites and for all variables the flow normalised median values exhibited much less oscillation and tended to indicate consistent trends through the whole record. This indicates that the oscillations are explained by flow regime variation and that the WRTDS flow normalisation procedure is effective in removing their effect. It is noted that oscillations in the rolling trends are shown in the preceding analysis (e.g., Figure 22, Figure 24) even for the flow-adjusted trends. This indicates that that flow normalisation by WRTDS is reasonably able to account for the impact of flow regime variation whereas flow-adjustment of instantaneous flow does not.
	Finally, the fourth feature of the data highlighted by the WRTDS models is that the rolling 5-year median values calcuated from the flow normalised WRTDS predictions were sometimes outside of the precision of the medians calculated from the monitoring data (Figure 31). This indicates water quality state, as represented by the monitoring data, is appreciably associated with flow regime variation. Further, this indicates that water quality state assessments produced from different assessment periods may differ in association with flow regime variation even in the absence of changes in anthropogenic pressure on water quality. In other words, assessments produced from monitoring data for a specific assessment period may indicate poorer or better or water quality for the site than that which would be obtained if the assessment period had represented the “average” flow regime.
	  /
	Figure 31. Rolling five-year median values for the preceding five-year assessment period. T
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	The National Policy Statement on Freshwater Management (NPS-FM) and section 35 of the RMA requires AC to monitor water quality, regularly assess and report on water quality state, including the state of compulsory attributes identified as part of the National Objectives Framework (NOF), assess water quality trends, and take appropriate action in the case that those trends indicate degradation. In streams and rivers, these tasks are complicated because water quality observations are variable and are influenced by both the instantaneous flow at the time of observation and the preceding hydrological conditions (i.e., flow regime) at timescales of weeks, months and even years. Both the influence of instantaneous flow and the flow regime at longer time scales on water quality have implications for the assessment of water quality state, trends, and the attribution of trends to causes. 
	In this study, we undertook a series of analyses of water quality and associated flow data at 15 long term monitoring locations across the Auckland region. Based on the findings of those analyses and our experience and expertise in state and trend assessment, we make the following observations.
	Assessments of water quality state are uncertain. The most obvious component of uncertainty is associated with sample error. Sample error can be understood as the uncertainty associated with an estimate of the true water quality state that is made from monitoring data (a “sample”). This uncertainty arises because water quality is variable over time and observations are only a snapshot of what actually occurred (the “true” water quality state) over the assessment period. The uncertainty associated with sample error can be quantified and we refer to it as the precision of the state assessment (Section 5.1). Limited precision means that there is uncertainty in assessments of state, and therefore assignment of sites to NOF bands. In the context of assessing attribute state, precision can be understood as the range over which we could expect the assessed state to vary if there had been multiple independent sets of samples taken. 
	Instantaneous flow rate was represented in this study by mean daily flows and was shown to be generally associated with river water quality variability and therefore the precision of state assessments. We showed that water quality variables are correlated with instantaneous flow rate (Section 5.4). If water quality assessments, including attribute states, are to describe characteristics of the true water quality state, in the assessment period, water quality sampling needs to be unbiased with respect to instantaneous flow rate. If samples are unbiased with respect to instantaneous flow, then over an assessment period, the range of flows sampled should approximate the distribution of all flows in the assessment period. For the 15 monitoring sites that were the focus of this study, we found that this was always true. In any five-year assessment period, the distribution of instantaneous flows on sample occasion was never significantly different to the distribution of all flows (Section 5.3.2). This means that the sampling was unbiased with respect to instantaneous flow.
	Flow regime variability refers to variation in flows at longer than instantaneous (i.e., daily) timescales. Flow regime variability produces another aspect of uncertainty of state assessments that is not quantified. This uncertainty is associated with the fact that flows for any five-year assessment period are not a perfect representation of the long-term “average” flow regime (Section 5.2). From this we can infer that the flow regime can also be expected to vary significantly between state assessment periods (i.e., 5-year periods). State assessments can therefore also be expected to vary between assessment periods because of differences in the flow regime between those periods. We refer to this second component of uncertainty associated with water quality state assessments as unquantified uncertainty of type A. With respect to state assessment, unquantified uncertainty of type A can be understood as the difference in state assessments between five-year assessment periods that can be expected due to hydrological differences (manifested as flow regime variation) between the periods. This uncertainty is not readily quantified, although its existence can retrospectively be seen as oscillations in attribute state over time (Sections 5.5.2and 5.6 ). 
	The unquantified uncertainty of type A associated with state assessments is relevant to the NPS-FM requirement to publish comparisons of current and target attribute states (S3.30(2)(b)) and to assess whether target attribute states are being, or are likely to be, achieved (S3.30(2)(c)), and to assessments of trends and their causes (S3.30(2)(d)). The intent of these requirements is to identify changes in water quality in a timely fashion and understand their causes so that appropriate action can be taken if they are due to effects of human resource use rather than natural or unmanageable causes. However, in this study, we showed that water quality is strongly influenced by flow regime variation (Section 5.6). Therefore, both trends and state assessments pertaining to different time-periods will differ due to differences in flow regimes between the periods. Because flow regime variability is a strong drivers of water quality variability, they are a confounding factor with respect to the intent of the above NPS-FM requirements. We note that the influence of flow regime variability on water quality may be due to variation in climatically-driven processes that control the mobilisation, storage and transport of contaminants in catchments. However, additionally the influence may be exerted by anthropogenic responses to climatic variation. For example, land management practices might be different in wet and dry years and these differences may be reflected in water quality differences. 
	Unquantified uncertainty of type A is also relevant to setting target attribute states because these are based on assessments of baseline and current state. Because flow regime variability is associated with oscillations in water quality state (Sections 5.5.2 and 5.6), a baseline or current state assessment may represent an unusually good or poor water quality for a site over the long run. The risk associated with this uncertainty is that baseline state assessments may estimate better water quality than that associated with the “average” flow regime, and this may result in targets that are not ambitious enough to effect change. Alternatively, the assessed baseline may represent better water quality than that associated with the “average” flow regime and targets may be set that are not achievable. 
	Flow conditions can be considered a “covariate” when we are interested in how water quality observations are changing over time. This means that flow conditions are related to the water quality observations, but their influence confounds identifying whether anthropogenic factors are involved and whether action needs to be taken. Because flow is a covariate, an accepted practice in trend assessment is to undertake “flow-adjustment”. Flow-adjustment attempts to remove the influence of instantaneous flow on the water quality observations prior to trend analysis. There is an important distinction between instantaneous flow rate and flow regime variability at longer time scales. Flow-adjustment uses a statistical process to control for instantaneous flow rate on water quality observations (Section 5.4.1). However, this does not account for all the influence of flow regime variability on water quality because hydrological processes vary over a range of temporal scales. 
	In this study we show that trend magnitude (indicated by Sen slopes) and direction (indicated by confidence the trend was decreasing; 𝐶𝑑) produced by rolling trend assessments oscillate over time (see Section 5.5.2). The magnitude and frequency of the oscillations tend to decrease with increasing assessment period duration due to temporal smoothing. The most plausible explanation for these oscillations is the influence of climatic processes. Various studies have shown that the El Niño Southern Oscillation climate pattern (ENSO) translates into a predictable variation in water quality trends (Scarsbrook et al. 2003; Snelder et al. 2021c, b). In this study we also showed that flow-adjustment of water quality data prior to trend analysis does not reduce the magnitude and frequency of the oscillations seen in results of rolling trend assessments (Section 5.5.2). This indicates that the influence of flow regime variation on water quality is not removed by flow-adjustment. Flow regime variation therefore remains a confounding factor when considering how to respond to degrading trends as required by NPS-FM (S3.30(2)(d)).
	There are commonly accepted methods for fitting trend models that we employed in this study. A key determination from trend models is trend rate and confidence in the trend direction. Confidence in assessments of trend rates and direction can be understood as analogous to the precision of state assessments; limitations to confidence is equivalent to limitations to precision and is due to sample error. However, because trend analysis is based on statistical models, it involves simplifications, assumptions and procedural decisions. The influence of these simplifications, assumptions and procedural decisions are not reflected in the evaluation of the confidence of a trend assessment (i.e., are not quantified) but are a source of uncertainty that should not be overlooked. 
	In the context of trend analysis, there are two sources of unquantified uncertainty. First, there will be differences in trend assessments between different time-periods that are associated with differences in the flow regimes over those periods that we refer to as unquantified uncertainty of type A. Type A uncertainty means that trend rate and direction indicated by an “up-to-date” trend assessment, for example an assessment of a short duration trend (e.g., 5 or 10-years duration) that ends with the most recent observations, may be a response to flow regime variation and may be reversed in a subsequent time step. In this study, we demonstrated that rolling trend assessments vary considerably in trend magnitude and direction, even between assessment periods that are close in time. For example, rolling trend assessments periods of 5 and 10 years duration that increment by one year, can go from “Likely” or “Very likely” decreasing to “Likely” or “Very likely” increasing when the assessment period is incremented by only one or two years (Section 5.5.2). The likelihood of reversal of short duration “up-to-date” trend means they cannot be regarded as the sole basis for making decisions to act. The second source of unquantified uncertainty in trend analysis arises due to there being other potential models that describe the trend, these may result in differences in the assessment, and these alternative models may be equally credible. In this study, we refer to this type of unquantified uncertainty as type B and demonstrated this by showing that there are alternative credible flow-adjustments and these produce differences in trend assessments (Section 5.5.1).
	The first step in flow-adjustment is to model the relationship between instantaneous flow and the water quality observations. In this study, we showed that this process is subjective and there is generally more than one plausible model of the association (Section 5.4). Furthermore, we demonstrated that these different flow-adjustments result in differences in trend assessments (see Section 5.4.1). Consequently, flow-adjustment adds to the uncertainty associated with trend assessment and this uncertainty is generally not quantified in the application of commonly accepted trend assessment methods. 
	Management of water quality would be facilitated by early warning of degradation and whether specific anthropogenic activities are causing the degradation. This suggests that trend assessments based on short assessment periods (e.g., 5-years duration) ending with the most recent observations are desirable because these describe changes that have occurred in the recent past. However, rolling trend assessments show that the shorter the time-period, the greater the likelihood of reversal of the assessed trend at the subsequent trend assessment (see Section 5.5.2). We also showed that the tendency for water quality state to oscillate is strongly decreased when flow regime variation is accounted for (flow normalised WRTDS predictions, Section 5.6 ). This indicates that short term trends are likely to be strongly influenced by flow regime variation, even when these trends are flow-adjusted. Therefore, on their own, short term trend assessments are not a reliable early warning mechanism. 
	More generally, a trend assessment produces no information regarding the causes of the observed trend. The effects of hydrological variation may amplify or counteract the effects of other drivers of water quality trends. Therefore, there is a risk that reporting water quality trends without robust attempts to identify the causes may lead to speculative attribution of the trends to anthropogenic drivers. This may then lead to management actions to mitigate anthropogenic drivers that are ineffective in reversing degrading trends, or complacency that water quality is being protected when in fact anthropogenic degradation has been counteracted by effects of hydrological variation. 
	Temporal variation in water quality is complex. Our ability to understand and describe this variation is increasing as data records increase in duration, and our ability to model the complex relationships improves. In this study we demonstrated WRTDS as a new approach to modelling the evolution of water quality over time. The WRTDS models indicated that interannual oscillations in water quality are strongly associated with flow regime variation because flow normalised predictions produced by WRTDS were considerably smoother than the non-normalised counterparts (Section 5.6). These results are consistent with the established link between the ENSO climate pattern and variation in water quality trends (Snelder et al. 2021c, b). Importantly, because WRTDS can remove the influence of flow regime variation on water quality, it is likely to be more useful than traditional flow-adjusted trend analysis when assessments aim to determine whether anthropogenic pressure or actions are changing water quality (e.g., Choquette et al. 2019; Murphy 2020).
	The analyses undertaken by this study are examples of the need to use models, of increasing complexity, to make sense of water quality data and to carry out the requirements of the NPS-FM effectively and robustly. Therefore, we consider that Section 1.6 of the NPS-FM needs to be interpreted carefully and broadly. In our opinion, raw data is not useful information and the “best information available” is obtained from a combination of data and modelling. In addition, it should always be acknowledged that estimates of state and trends are representations of reality with associated uncertainties; both quantified and unquantified. Unquantified uncertainties should be understood as differences in assessments of state and trends that arise because:
	 no two assessment periods are alike, from, at least, a flow regime perspective
	 modelling involves simplifications of reality and different models and modellers are likely to produce different but equally plausible assessments using the same data.
	The requirement under NPS-FM S3.30(2)(d) to assess causes of trends is referred to by Snelder et al. (2021b, c) as “attribution”. The present study was not explicitly concerned with attribution. However, flow-adjustment and flow normalisation, as undertaken in this study, can be regarded as statistical approaches to removing the influence of instantaneous flow and longer-term flow regime variability, respectively. The purpose of these procedures is to allow attribution of trends to factors other than instantaneous flow and flow regime variability. We define “rigorous attribution” (of cause) to mean quantitative analyses of relationships between water quality trends and drivers, and consideration of multiple alternative drivers (Ryberg 2017; Ryberg et al. 2018; Murphy 2020). Rigorous attribution of cause will generally be based on statistical models that include multiple alternative drivers, consideration of the physical plausibility of the associations, and quantification of the confidence in the inferred causes. We identify weaker alternatives to “rigorous attribution” to include qualitative reasoning, references to previous studies, and simple speculation.  
	In our opinion, AC should strive to undertake robust attribution of cause(s) in seeking to carry out the requirements of NPS-FM S3.30(2)(d). However, this is extremely challenging for two reasons. First, suitable data characterising spatio-temporal variation in environmental drivers of water quality are scarce and fragmented. Suitable data consist of time-series of measurements of land use and management and point sources of contaminants, with durations and frequencies that correspond to water quality time-series, and which are spatially congruent with water quality monitoring sites (Snelder et al. 2021b). Second, water quality is generally influenced by multiple environmental drivers, including anthropogenic drivers such as land use and natural drivers such as climate variability and its impact on flow regimes. There may be additive, compensatory or synergistic interactions among these drivers, making it difficult to reliably attribute water quality responses to specific water quality pressures. The influences can only be elucidated by modelling and models are dependent on there being sufficient sites for the signals (i.e., causes) to rise above the noise. 
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	In this section we provide recommendations for dealing with the complications that arise in carrying out the requirements of the NPS-FM due to the relationship between water quality variables, including NPS-FM attributes, and flow. These recommendations are narrowly focussed on technical issues and are based on our technical interpretation of the relevant NPS-FM sections and the limitations to scientific quantification of water quality state and trends. Our recommendations are distinguished below by bold italic text.
	We recognise that the wording of the NPS-FM can be interpreted less narrowly than our interpretation for the purposes explored in this report. Broader interpretation of these policy requirements may provide greater discretion for responding to the policy intent. Therefore, we consider that our recommendations need to be considered by people with expertise in NPS-FM implementation. Furthermore, we consider the details of AC’s implementation should be a blend of our suggestions with those of policy experts and those charged with NPS-FM implementation. The aim should be to strike an appropriate balance between the intent of the NPS-FM and what is technically possible and defensible. In our opinion, the need to strike this balance means that there is no perfect solution to the problems exposed in this study with respect to the uncertainty of state and trend assessments. Therefore, in carrying out its functions it is important that AC acknowledges the limitations and is transparent about how uncertainty has been dealt with in implementation of the NPS-FM. In addition, we suggest that this report and our recommendations should not be regarded as comprehensive or final. This is a complex topic that involves multiple disciplines and best practice is therefore likely to evolve over time. 
	Our study has shown that water quality variables observed in rivers are correlated to varying degrees to instantaneous flow. So that assessments of attribute state describe the true water quality state, water quality sampling needs to be unbiased with respect to instantaneous flow rate. This ensures that the range of variability in the population of a water quality variable is represented by the observations (i.e., the sample). We therefore recommend that water quality sampling continues to be carried out so that it is unbiased with respect to instantaneous flow.
	Because assessments of attribute state are made from a sample, they should be considered as model outputs that contain unavoidable uncertainty. However, the “face value” of an assessed attribute state (i.e., the evaluated numeric attribute state or NOF band) is the best estimate of the state in the assessment period, given the available data. We therefore recommend that:
	- an assessed baseline, or current attribute state is regarded as the “best information at the time” as defined by NPS-FM Section 1.6(1) and the uncertainty of the assessment is not an adequate reason to delay giving effect to the NPS-FM. 
	- the precision of the current state estimates (as implemented in this study or similar) is included when considering and publishing data describing attributes and the associated uncertainty (NPS-FM S3.30(1c)). 
	- when appropriate, unquantified uncertainty of type A associated with baseline/current attribute state is broadly described as arising from the influence of flow regime variability on water quality at timescales of weeks to years. 
	- when appropriate, it is transparently stated that unquantified uncertainty of type A will impact on future water quality state assessments and that when appropriate, it is clarified that these fluctuations confound the identification of anthropogenic causes of water quality change and the formulation of appropriate actions.
	We note that the current MFE guidance regarding S3.18 of the NPS-FM (MFE 2022) does not acknowledge that there are uncertainties associated with information derived from monitoring data. The MFE guidance does indicate that the monitoring method must be fit for purpose and there is therefore a broader question about whether the uncertainties associated with monitoring are acceptable. In our opinion, there is insufficient research on the potential impact of unquantified uncertainty of type A to answer this question robustly. 
	An obvious question is whether water quality monitoring sample frequency is sufficient to satisfy the fit for purpose criteria suggested by the MFE guidance. We don’t have any recommendations regarding changing water quality monitoring frequency for the purposes of state and trend assessment. All other things being equal, increasing monitoring frequency will increase the precision of state assessments and confidence in trend assessments. However, it is not clear how helpful this will be because it does not address the issue of unquantified uncertainty of type A. We recommend that more research is needed into increasing the certainty of state and trend assessments. 
	We recommend that the impact of unquantified uncertainty of type A on assessment of baseline, and current state is considered when setting target attribute states and developing actions to improve water quality. This could take the form of sensitivity analyses that test the extent to which planned actions may fail to achieve target attribute states in future assessment periods due to foreseeable influence of flow regime variability on water quality. 
	We recommend that analysis of water quality time series is used to attempt to quantify the potential magnitude of foreseeable fluctuations in water quality due to flow regime variation. We suggest that the WRTDS model is a promising tool for this type of investigation. We also suggest that AC’s process-based Freshwater Management Tool (FWMT) is potentially useful for this type of analysis. 
	We recommend that water quality trend assessments are always represented as model outputs that are unavoidably uncertain. To manage the uncertainty, we recommend that AC consider that there are two types of application of trend analysis; “regional application” and “local application” as described by the current guidance on trend assessment (Snelder et al. 2021a). A “regional application” of trend analysis should be regarded as assessing and reporting trends across many sites and variables in the context of regional SOE monitoring programmes, and to satisfy requirements to publish information about state and trends set out in the NPS-FM. We recommend that AC utilises “regional application” of trend analysis to fulfil its NPS-FM requirements to assess progress towards target attribute states under S3.30(2)(c). A “regional application” should use a consistent methodology over sites and variables and should be regarded as a screening exercise that seeks to identify problem locations for closer inspection. The currently accepted approach to “regional application” of trend assessment is the use of non-parametric correlation and regression as set out in (Snelder et al. 2021a) and as used to make trend assessments in this study. In relation to “regional application” of trend analysis, we recommend that:
	- flow-adjustment is not undertaken and only raw (un-adjusted) trends are reported under S3.30(2)(c).
	- it is made clear in reporting that trend assessments only describe changes in water quality that were observed and not what they were caused by.
	- consideration is given to reporting trend assessment periods of at least 10-year periods, and possibly longer to reduce the likelihood that abrupt changes in these assessments occur if reporting occurs frequently (e.g., annually).
	We recommend that AC regards “local application” of trend analysis to be associated with the requirements to assess trends and their causes under NPS-FM S3.30(2)(d). We recommend that “local application” of trend analysis is “triggered” where (i.e., for those sites and variables) “regional application” undertaken to fulfil S3.30(2)(c) requirements provides evidence that deterioration was observed. The objective of a local application is to extract as much information as possible about the trend direction and rate of change from the available data (Snelder et al. 2021a). A local application may therefore utilise more than one statistical method and may produce assessments that are inconsistent with assessments made using the approach recommended for a “regional application”. NPS-FM S3.30(2)(c) and S3.30(2)(d) require assessment of trends and their causes. Therefore, we recommend that it is appropriate for local application of trend analysis to incorporate flow-adjustment. However, we recommend caution with inferences made from flow-adjusted trends and that it is kept in mind that flow-adjustment adds unquantified uncertainty of type B to the assessment and does not remove the influence of flow regime variation to trend assessments. It is important to acknowledge that there is no definitive numeric data driven assessment that can, with complete accuracy, assess progress towards target attribute states or attribute a trend to a cause. A combination of analysis and modelling and use of different lines of evidence (e.g., water quality observations, measured actions and/or physical changes in the catchment) will need to be used to arrive at a “reasoned judgement” about progress in river health and causes of trends.
	We recommend that the NPS-FM requirements to assess trends and their causes under NPS-FM S3.30(2)(d) should be applied by ensuring, whenever possible, that water quality monitoring is associated with flow data. In our opinion, the interpretability and therefore, value of water quality data, is dependent on associated flow measurement. The manner in which the WRTDS model combines daily flow records with less frequent water quality observations indicates that flow data needs to be, at least, at the daily timescale. Flow data at least at the daily timescale is also required for estimating contaminant loads, which is also likely to be needed to support ongoing NPS-FM implementation. We acknowledge that it will not always be possible to have river water quality monitoring sites co-located with flow sites and that water quality monitoring sites that do not have measured flows are nevertheless useful. We therefore recommend that AC considers collecting data over the long term to improve the ability to use models to provide synthetic flow records for water quality monitoring sites that do not have measured flow.  
	We recommend that, to the extent that it is possible, trend cause attribution incorporates assessment of hydrological drivers. We don’t have specific recommendations for how to do this and consider that the study of attribution of causes of water quality trends should be an active area of research. We suggest that new water quality modelling tools such as WRTDS and AC’s FWMT model are potentially useful for this type of analysis.  
	We recommend a cautious and staged approach with respect to taking action when degrading trends are detected. We recommend that degrading trends indicated by “regional application” of trend analysis to fulfil NPS-FM S3.30(2)(c) requirements are treated as “triggers” for closer analysis by “local application” of trend analysis (see the recommendations under Section 7.3 above). The evidence provided by “local application” of trend analysis can then be used to make judgements about taking proportionate action at stage 1. Stage 1 may include taking cautious action on the ground and/or potentially increased monitoring effort and ongoing surveillance of possible water quality pressures. In situations where there is an absence of information about trend drivers, such as changes in land use and management, and contaminant discharges, an appropriate response might be to retrospectively gather this information while continuing to monitor water quality. If deteriorating trends continue and/or confidence in the causes of these trends is judged sufficiently high, then stage 2 would be triggered that would involve significant intervention in the catchment to halt and reverse degradation. This staged approach is consistent with current MFE guidance regarding S3.20 of the NPS-FM (MFE 2022). The guidance points out that S3.19 “allows councils discretion based on risk, and on whether it is possible to determine unnatural cause, before declaring an attribute is ‘degrading’”. The guidance also indicates that the intent of the policy is that “the response should be proportionate to the likelihood of degradation, the magnitude and the risk to the environment, and the risk of not achieving the target attribute state”.
	We recommend gathering data describing possible causes of trends, such as changes in land use practices and intensity, changes in point source discharge loads, and adoption of actions in the catchments of monitoring sites and across the Region in general. These data will be useful explanatory variables in any future attempt to robustly attribute water quality changes to anthropogenic causes and in our experience are frequently lacking. We note that this recommendation is consistent with the current MFE guidance regarding S3.18 of the NPS-FM (MFE 2022). That guidance suggests that “monitoring should not be limited to the state of the water body” and that it should include drivers such as land use and land use intensity as well as the implementation of actions such as “the rules and actions aim to halt expansion or intensity”.
	We recommend that thought is given to how physical changes in relevant water quality drivers are measured and recorded. We suggest that to some extent at least, the relevant measurements are going to be indicated by existing water quality models such as AC’s FWMT. In our experience, limitations around accurate representation of water quality drivers includes issues such as insufficient data describing concentrations and flow of point source discharges, insufficient data describing land use (particularly agricultural land use) and insufficient data describing land management practices. 
	It is unclear whether more frequent monitoring would improve our confidence to act, because attributing the change to causes so that appropriate action is taken will remain a significant issue even if the precision of trend assessments is increased. We recommend that more research is needed into attributing water quality changes to causes. 
	Robust attribution of cause(s) is difficult and will always be facilitated by increasing the number of monitoring sites. Increasing the site coverage will improve attribution of cause(s) in the long term. This study has also shown the value of having continuous daily flow data at monitoring sites. Therefore, we recommend that priority is given to adding sites to the water quality monitoring network that can be associated with flow data. We acknowledge that synthetic (i.e., modelled) flow data may be suitable for this purpose. If a flow modelling approach is to be taken at state of environment monitoring sites, AC should consider the ability to predict flows at those sites and the ability to model flows at new sites should be considered along with any other new site selection criteria.
	Finally, because attribution of causes to trends is dependent on both the collection of data and analysis (i.e., modelling), we recommend monitoring and modelling are treated as equal and mutually informative processes that must work together to fulfil AC’s functions and duties under the RMA and NPS-FM.
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	Table 9. Site-variable combinations with plausible flow-adjustment models. The criteria for plausibility is described in Section 4.4 and includes r2 ≥ 20% and p<0.01. All subjectively selected models had p values less than 0.001
	Number of observations
	r2
	Model
	Variable
	Site
	381
	0.76
	GAM
	CLAR
	Hoteo River (45703)
	367
	0.61
	LinLog
	TN
	Hoteo River (45703)
	536
	0.49
	LinLog
	DIN
	Hoteo River (45703)
	563
	0.46
	LinLog
	NNN
	Hoteo River (45703)
	647
	0.4
	GAM
	TP
	Hoteo River (45703)
	217
	0.33
	GAM
	ECOLI
	Hoteo River (45703)
	175
	0.73
	GAM
	CLAR
	Mahurangi River (Warkworth) (6804)
	100
	0.35
	LinLog
	CU
	Mahurangi River (Warkworth) (6804)
	118
	0.35
	LinLog
	TN
	Mahurangi River (Warkworth) (6804)
	290
	0.33
	LinLog
	DIN
	Mahurangi River (Warkworth) (6804)
	295
	0.33
	LinLog
	NNN
	Mahurangi River (Warkworth) (6804)
	295
	0.32
	GAM
	TP
	Mahurangi River (Warkworth) (6804)
	195
	0.22
	GAM
	CLAR
	West Hoe Stream (7206)
	142
	0.61
	LinLog
	TN
	Kaukapakapa River (45415)
	141
	0.59
	LinLog
	DIN
	Kaukapakapa River (45415)
	141
	0.59
	LinLog
	NNN
	Kaukapakapa River (45415)
	143
	0.42
	LinLog
	CLAR
	Kaukapakapa River (45415)
	143
	0.25
	GAM
	ECOLI
	Kaukapakapa River (45415)
	143
	0.22
	GAM
	TP
	Kaukapakapa River (45415)
	186
	0.32
	LinLog
	CLAR
	Vaughan Stream (7506)
	168
	0.32
	GAM
	CU
	Vaughan Stream (7506)
	126
	0.27
	GAM
	TN
	Vaughan Stream (7506)
	191
	0.24
	GAM
	TP
	Vaughan Stream (7506)
	190
	0.19
	LinLog
	NNN
	Vaughan Stream (7506)
	188
	0.17
	LinLog
	DIN
	Vaughan Stream (7506)
	157
	0.54
	LinLog
	CLAR
	Lucas Creek (7830)
	157
	0.43
	LinLog
	CU
	Lucas Creek (7830)
	157
	0.18
	LinLog
	ECOLI
	Lucas Creek (7830)
	201
	0.64
	GAM
	CLAR
	Oteha River (7811)
	173
	0.21
	LinLog
	ECOLI
	Oteha River (7811)
	295
	0.21
	LinLog
	ZN
	Oteha River (7811)
	465
	0.62
	LinLog
	CLAR
	Rangitopuni River (7805)
	586
	0.49
	LinLog
	NNN
	Rangitopuni River (7805)
	568
	0.48
	LinLog
	DIN
	Rangitopuni River (7805)
	394
	0.45
	LinLog
	TN
	Rangitopuni River (7805)
	668
	0.31
	GAM
	TP
	Rangitopuni River (7805)
	247
	0.28
	GAM
	ECOLI
	Rangitopuni River (7805)
	167
	0.57
	LinLog
	CLAR
	Opanuku Stream (7904)
	140
	0.22
	LinLog
	TN
	Opanuku Stream (7904)
	201
	0.49
	LinLog
	CLAR
	Otara Creek (East) (8205)
	339
	0.38
	LinLog
	NNN
	Otara Creek (East) (8205)
	141
	0.33
	LinLog
	TN
	Otara Creek (East) (8205)
	337
	0.29
	LinLog
	DIN
	Otara Creek (East) (8205)
	201
	0.45
	LinLog
	CLAR
	Puhinui Stream (43807)
	143
	0.38
	LinLog
	TN
	Puhinui Stream (43807)
	311
	0.14
	LinLog
	DIN
	Puhinui Stream (43807)
	313
	0.13
	LinLog
	NNN
	Puhinui Stream (43807)
	202
	0.64
	GAM
	CLAR
	Wairoa River (8516)
	143
	0.64
	LinLog
	TN
	Wairoa River (8516)
	341
	0.58
	LinLog
	DIN
	Wairoa River (8516)
	343
	0.57
	LinLog
	NNN
	Wairoa River (8516)
	172
	0.34
	GAM
	ECOLI
	Wairoa River (8516)
	125
	0.16
	LinLog
	CU
	Wairoa River (8516)
	126
	0.59
	LinLog
	CU
	Papakura Stream (Lower) (43856)
	203
	0.58
	LinLog
	CLAR
	Papakura Stream (Lower) (43856)
	144
	0.58
	GAM
	TN
	Papakura Stream (Lower) (43856)
	325
	0.52
	LinLog
	NNN
	Papakura Stream (Lower) (43856)
	323
	0.5
	LinLog
	DIN
	Papakura Stream (Lower) (43856)
	325
	0.42
	GAM
	TP
	Papakura Stream (Lower) (43856)
	125
	0.4
	LinLog
	ZN
	Papakura Stream (Lower) (43856)
	143
	0.41
	GAM
	TN
	Ngakoroa Stream (43829)
	202
	0.35
	LinLog
	CLAR
	Ngakoroa Stream (43829)
	320
	0.13
	GAM
	DIN
	Ngakoroa Stream (43829)
	322
	0.13
	GAM
	NNN
	Ngakoroa Stream (43829)
	144
	0.71
	LinLog
	TN
	Waitangi Stream (43601)
	143
	0.67
	LinLog
	CLAR
	Waitangi Stream (43601)
	142
	0.64
	LinLog
	DIN
	Waitangi Stream (43601)
	142
	0.63
	LinLog
	NNN
	Waitangi Stream (43601)
	142
	0.51
	GAM
	TP
	Waitangi Stream (43601)
	140
	0.41
	GAM
	NH4N
	Waitangi Stream (43601)
	141
	0.26
	LinLog
	DRP
	Waitangi Stream (43601)
	144
	0.23
	GAM
	ECOLI
	Waitangi Stream (43601)
	Table 10. Trend likelihood categories and their related Mann-Kendall statistics. 
	Confidence the trend was decreasing
	Mann-Kendall S statistic
	Trend symbol
	Trend likelihood category
	0.95 – 1.0
	Negative
	+++
	Highly likely decreasing
	0.9 – 0.95
	Negative
	++
	Very likely decreasing
	0.67 – 0.9
	Negative
	+
	Likely decreasing
	0.50 – 0.67
	Negative
	±
	As likely increasing as decreasing
	0.50 – 0.67
	Positive
	±
	As likely increasing as decreasing
	0.67 – 0.90
	Positive
	-
	Likely increasing
	0.90 – 0.95
	Positive
	--
	Very likely increasing
	0.95 – 1.0
	Positive
	---
	Highly likely increasing
	Table 11. Trend categories for site-variable combinations before and after flow-adjustment. 
	2010-2020
	2009-2019
	2008-2018
	2007-2017
	Adj
	Raw
	Adj
	Raw
	Adj
	Raw
	Adj
	Raw
	Variable
	Site
	±
	--
	+
	+
	±
	+
	--
	-
	TP
	Hoteo River (45703)
	++
	±
	±
	+
	±
	+
	±
	-
	TN
	Hoteo River (45703)
	NA
	±
	±
	±
	±
	±
	--
	---
	NNN
	Hoteo River (45703)
	+++
	++
	+
	+
	±
	+
	-
	-
	ECOLI
	Hoteo River (45703)
	+
	±
	±
	±
	±
	±
	--
	---
	DIN
	Hoteo River (45703)
	±
	++
	+
	±
	+
	±
	+++
	+++
	CLAR
	Hoteo River (45703)
	Mahurangi River (Warkworth) (6804)
	+
	-
	++
	±
	+
	++
	+++
	++
	TP
	Mahurangi River (Warkworth) (6804)
	±
	+
	±
	±
	--
	-
	--
	--
	TN
	Mahurangi River (Warkworth) (6804)
	±
	+
	±
	+++
	±
	±
	±
	--
	NNN
	Mahurangi River (Warkworth) (6804)
	-
	±
	±
	+
	-
	-
	±
	---
	DIN
	Mahurangi River (Warkworth) (6804)
	-
	+
	-
	+
	±
	+
	±
	-
	CU
	Mahurangi River (Warkworth) (6804)
	±
	+++
	-
	±
	±
	±
	++
	++
	CLAR
	+++
	+++
	+++
	+++
	+++
	+++
	+++
	+++
	CLAR
	West Hoe Stream (7206)
	---
	---
	---
	---
	---
	---
	---
	---
	TP
	Kaukapakapa River (45415)
	+
	--
	-
	-
	---
	--
	--
	---
	TN
	Kaukapakapa River (45415)
	±
	---
	-
	-
	±
	-
	±
	-
	NNN
	Kaukapakapa River (45415)
	±
	-
	±
	-
	±
	±
	±
	±
	ECOLI
	Kaukapakapa River (45415)
	±
	--
	-
	-
	--
	±
	-
	-
	DIN
	Kaukapakapa River (45415)
	±
	++
	±
	+
	+++
	+++
	+++
	+++
	CLAR
	Kaukapakapa River (45415)
	--
	--
	-
	---
	±
	-
	±
	-
	TP
	Vaughan Stream (7506)
	±
	-
	--
	---
	---
	---
	-
	---
	TN
	Vaughan Stream (7506)
	±
	+
	±
	+
	+
	+
	+++
	+
	NNN
	Vaughan Stream (7506)
	+
	-
	±
	-
	+
	±
	+++
	+
	DIN
	Vaughan Stream (7506)
	+++
	+++
	++
	++
	+++
	+
	+++
	+
	CU
	Vaughan Stream (7506)
	---
	-
	---
	---
	---
	---
	---
	-
	CLAR
	Vaughan Stream (7506)
	±
	±
	±
	+
	+
	+++
	+
	+
	ECOLI
	Lucas Creek (7830)
	+++
	+++
	+++
	+++
	+
	++
	--
	-
	CU
	Lucas Creek (7830)
	+++
	++
	+++
	+
	+++
	±
	+++
	+++
	CLAR
	Lucas Creek (7830)
	++
	+
	±
	+
	±
	±
	+
	±
	ZN
	Oteha River (7811)
	±
	+
	+
	+++
	+
	+++
	+++
	++
	ECOLI
	Oteha River (7811)
	+
	±
	±
	--
	+
	---
	±
	±
	CLAR
	Oteha River (7811)
	---
	---
	---
	---
	---
	--
	---
	---
	TP
	Rangitopuni River (7805)
	-
	---
	-
	±
	±
	+
	+
	±
	TN
	Rangitopuni River (7805)
	NA
	---
	NA
	--
	NA
	-
	-
	-
	NNN
	Rangitopuni River (7805)
	±
	-
	±
	±
	±
	±
	-
	-
	ECOLI
	Rangitopuni River (7805)
	NA
	---
	--
	---
	---
	-
	-
	--
	DIN
	Rangitopuni River (7805)
	+++
	+++
	-
	-
	±
	-
	+
	+
	CLAR
	Rangitopuni River (7805)
	++
	+
	±
	±
	-
	-
	-
	--
	TN
	Opanuku Stream (7904)
	+
	+
	±
	+
	+
	+
	+++
	+
	CLAR
	Opanuku Stream (7904)
	-
	-
	---
	---
	---
	---
	---
	---
	TN
	Otara Creek (East) (8205)
	++
	±
	±
	-
	---
	-
	---
	---
	NNN
	Otara Creek (East) (8205)
	+
	-
	-
	---
	---
	---
	---
	---
	DIN
	Otara Creek (East) (8205)
	+
	+
	±
	±
	±
	-
	+++
	±
	CLAR
	Otara Creek (East) (8205)
	-
	---
	--
	-
	---
	--
	---
	---
	TN
	Puhinui Stream (43807)
	±
	-
	±
	±
	±
	-
	---
	---
	NNN
	Puhinui Stream (43807)
	±
	-
	-
	±
	-
	-
	---
	---
	DIN
	Puhinui Stream (43807)
	+++
	+++
	+++
	+++
	+++
	+++
	+++
	+++
	CLAR
	Puhinui Stream (43807)
	+
	±
	-
	±
	---
	--
	---
	---
	TN
	Wairoa River (8516)
	+++
	+
	±
	+
	---
	-
	---
	---
	NNN
	Wairoa River (8516)
	---
	--
	---
	---
	---
	---
	---
	---
	ECOLI
	Wairoa River (8516)
	+++
	+
	±
	++
	---
	-
	---
	---
	DIN
	Wairoa River (8516)
	++
	+
	+
	++
	±
	±
	--
	-
	CU
	Wairoa River (8516)
	+
	+++
	+
	±
	+++
	++
	+++
	+++
	CLAR
	Wairoa River (8516)
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