20 April 2023

Research and Evaluation Unit

Auckland Air Quality Report

Monthly update

Introduction

We are committed to continuously collecting air quality data to ensure compliance with national standards and aid policy development and evaluation. The data we collect provides a better understanding of ambient air quality in the region, including spatial and temporal variations. To provide regular updates on air quality in Auckland, this report presents a monthly summary. The report is divided into four sections, with sections A and B featuring tables and graphics that illustrate air quality status in the Auckland region based on data collected from continuous monitoring sites across the region.

For this edition, section C focuses on one monitoring site, Patumahoe. Section D provides monthly averages for 2023 and the past two to five years of pollutant concentrations (when data is available). The monthly update is prepared using validated data, which is typically available one month after raw data collection. This report covers data up to 28 February 2023. By providing regular updates on air quality, Auckland Council aims to promote awareness and encourage actions to improve air quality in the region.

Summary

Most monitoring sites have recorded lower concentrations of particulate matter (PM_{2.5} and PM₁₀) compared to the previous year. This reduction is likely due to increased rainfall in <u>January</u> and <u>February</u>, resulting in reduced airborne particulates.

As expected, the city centre sites have recorded the highest levels of nitrogen dioxide (NO₂) concentrations, though these levels are lower than the same period in the previous year.

There has been an increase in sulphur dioxide (SO₂) levels at the two monitoring stations, and the reason for this is unclear. Further studies are needed to determine the cause of this increase.

It is important to note that air quality at a monitoring site can vary from year to year due to weather and other influences. For a trend analysis of change, please see Table 2 and <u>Auckland air quality report</u>, <u>October 2021</u>.

Overall, the report highlights improvements in some areas, such as PM and NO₂ concentrations. However, it is essential to continue monitoring and analysing the data to ensure sustained progress and identify areas that require further action.

Glossary of terms

Term	Meaning							
Aerodynamic diameter	Used to describe the behaviour of a particle as it moves around in the air; it compares the behaviour with that of a spherical particle of unit density.							
Air pollutant/contaminant	Any substance in the air that could harm humans, animals, vegetation, or other parts of t environment when present in high enough concentrations.							
Air pollution	The presence of one or more air pollutants in high enough concentrations to cause harm.							
Air quality	Is the degree to which air is suitable or clean enough for humans, animals, or plants to remain healthy.							
Air quality index (AQI)	Score out of 100, based on dividing a pollutant concentration by a relevant standard. It can be used to approximate relative impact of different pollutants.							
Ambient air	The external air environment (does not include the air environment inside buildings or structures)							
Black carbon (BC)	Is an air pollutant made up of tiny soot-like particles discharged into the atmosphere from combustion processes.							
СО	Carbon monoxide, a type of air pollutant.							
Exceedance	An exceedance defines a period of time during which the concentration of a pollutant is greater than the appropriate air quality criteria.							
Ground-level ozone (O ₃)	At ground level, ozone is considered an air pollutant that can seriously affect the human respiratory system. It is a major component of photochemical smog.							
Monitoring site	A facility for measuring the concentration of one or more pollutants in the ambient air; also referred to as 'monitoring station'							
NESAQ	National Environmental Standard for Air Quality.							
NO ₂	Nitrogen dioxide, a type of air pollutant							
РМ	Particulate matter is made up of a mixture of various sizes of solid and liquid particles suspended in air.							
PM ₁₀	Particulate matter with an aerodynamic diameter of 10 micrometres or less; a type of air pollutant.							
PM _{2.5}	Particulate matter with an aerodynamic diameter of 2.5 micrometres or less; a type of air pollutant.							
SO ₂	Sulphur dioxide, a type of air pollutant							
µg/m³	Microgram of pollutant (1 millionth of a gram) per cubic metre of air, referenced to temperature of 0°C (273.15 K) and absolute pressure of 101.325 kilopascals (kPa)							
n/a	Not applicable							

Data can be viewed on the <u>environmental data portal</u>, <u>LAWA</u> or requested from <u>environmentaldata@aucklandcouncil.govt.nz</u>

Full state and trends analyses and reports are prepared every few years (the most recent report is *Trends in Auckland's air quality 2006-2018*).

The <u>2021 Annual data report</u> is available on the Knowledge Auckland website. The 2022 annual data report is in preparation.

See also, the <u>frequently asked questions</u> about the Auckland air quality monitoring programme.

V	Vhat we monitor	Why we monitor					
	Particulate matter (PM) - PM_{10} and $PM_{2.5}$	Tiny particles (particulate matter) from polluting sources such vehicles and smoke get into the air. Breathing them may cause health problems.					
Air	Nitrogen dioxide (NO ₂)	Vehicles are the main source of NO ₂ in Auckland. It can irritate the lungs, increasing susceptibility to asthma and lowering resistance to respiratory					
	Other pollutants	Air pollutants ozone, sulphur dioxide, carbon monoxide, black carbon and volatile organic compounds (VOCs) like benzene cause adverse health effects at elevated concentrations.					
Greenhouse gas emissions	Carbon dioxide (CO ₂), methane (CH ₄), nitrous oxide (N ₂ O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF ₆) and nitrogen trifluoride (NF ₃)	The climate is warming due to increased greenhouse gas (GHG) levels in the atmosphere caused by human activities. Reducing GHG emissions will limit temperature rise.					

Section A – Data tables

Table 1. Summary information about Auckland air quality monitoring programme 1 January to 28 February 2023

Number of exceedances of NESAQ in 2023	0						
Number of exceedances of Auckland ambient air quality targets in 2023	0						
Maximum PM ₁₀ 24-hours mean (January to February 2023)	34.3 μg/m ³ (68.6% of NESAQ)	Recorded at Queen Street on 8 Feb 2023					
Maximum PM _{2.5} 24-hour mean (January to February 2023)	17.3 μg/m³ (69.2% of Auckland target)	Recorded at Patumahoe on 8 Feb 2023					
Maximum NO ₂ 1-hour mean (January to February 2023)	78.0 μg/m³ (39.0% of NESAQ)	Recorded at Khyber Pass Rd on 23 & 27 Feb 2023					
Maximum SO ₂ 1-hour mean (January to February 2023)	15.0 μg/m³ (4.3% of NESAQ)	Recorded at Customs Street on 15 Jan 2023					
Maximum O₃ 1-hour mean (January to February 2023)	66.0 μg/m ³ (44.0% of NESAQ)	Recorded at Patumahoe on 8 Jan 2023					
Maximum CO running 8-hour mean (January to February 2023)	0.39 mg/m ³ (3.9% of NESAQ)	Recorded at Khyber Pass Rd on 22 Feb 2023					
Number of continuous monitoring sites	10						
Location of monitoring sites	Queen Street, Customs Street, Khyber Pass Road, Penrose, Henderson, Takapuna, Glen Eden, Pakuranga, Papatoetoe, and Patumahoe						

NO₂ **Black carbon** SO₂ PM₁₀ PM_{2.5} Ozone со Air Quality Index(AQI) Last 50 Last 50 Last 50 Last 50 Last 50 Last 26 Last 38 Last 26 Last 38 Last 26 Last 38 Last 26 Last 38 Last 50 Last 26 Last 38 Last 26 Last 38 Last 50 Last 26 Last 38 Last 26 Last 38 Last 50 Site months Site Customs Customs Ψ \mathbf{J} J n/a n/a n/a 7 n/a n/a N N n/a n/a n/a n/a n/a n/a n/a $\mathbf{\Lambda}$ n/a n/a n/a n/a Street* Street* ł Ł N N N N 7 2 N **Glen Eden*** 2 $\mathbf{\Lambda}$ $\mathbf{\Lambda}$ n/a Glen Eden* $\mathbf{\Psi}$ N N 7 7 N ы Henderson n/a n/a n/a 2 N 2 **N** n/a n/a n/a n/a n/a n/a n/a n/a 3 Henderson n/a Khyber Pass Khyber Pass $\mathbf{\Psi}$ $\mathbf{\Psi}$ $\mathbf{\Psi}$ 7 3 ы 3 **Λ** $\mathbf{\Lambda}$ n/a Road Road 7 7 N 7 N 3 Pakuranga* n/a Pakuranga* Ł ы N Papatoetoe n/a Papatoetoe $\mathbf{\Psi}$ ł Ł 7 7 J Patumahoe 7 7 $\mathbf{\Lambda}$ 7 n/a 7 N 2 n/a n/a n/a n/a 3 3 Patumahoe n/a n/a n/a n/a **V** N N $\mathbf{\Psi}$ N 2 ł 2 ы N n/a n/a n/a n/a n/a n/a n/a $\mathbf{\Lambda}$ 3 3 Penrose Penrose n/a n/a 1 Queen Queen **J** 7 7 Ł Ł \mathbf{J} N 1 1 $\mathbf{\Lambda}$ $\mathbf{\Lambda}$ \mathbf{T} n/a Street Street 7 7 7 N 7 N 7 7 2 n/a n/a n/a n/a n/a 7 Takapuna Takapuna n/a n/a n/a n/a n/a n/a n/a 2 NO₂ со SO₂ Air Quality Index(AQI) PM₁₀ PM₂ Black carbon Ozone

Table 2. General changes in concentration of key contaminants monitored for the last 26, 38 and 50 months.

↑ indicates an increase

✤ indicates a decrease

increase but not significant

**** decrease but not significant

Notes

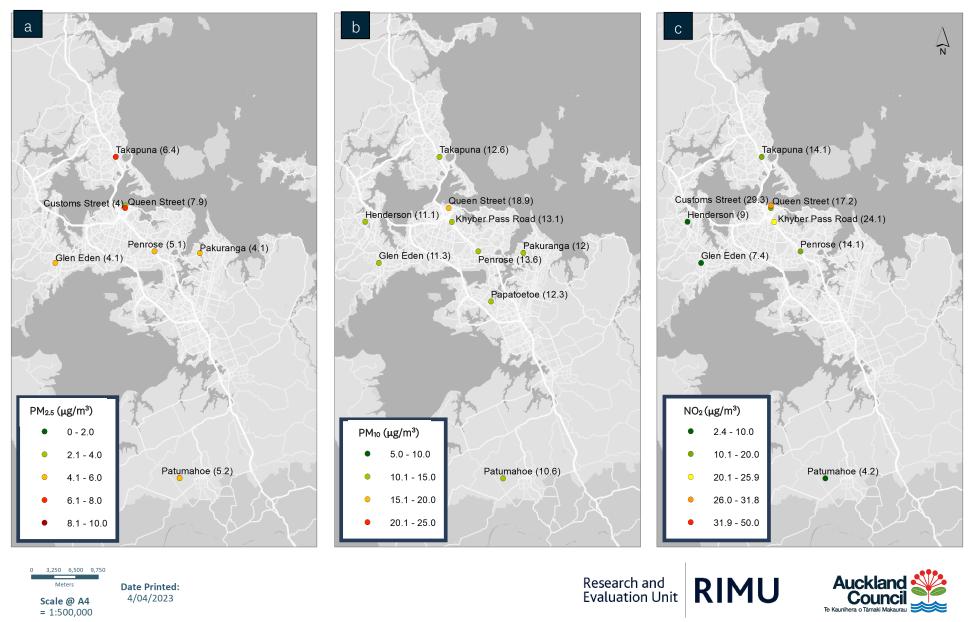
Change significance was determined using the Theil-Sen method: 🛧 and 🕹 mean change is statistically significant at the 0.05 level, 95% confidence intervals.

Effective dates: 26 months (1 January 2021 to 28 February 2023), 38 months (1 January 2020 to 28 February 2023), and 50 months (1 January 2019 to 28 February 2023).

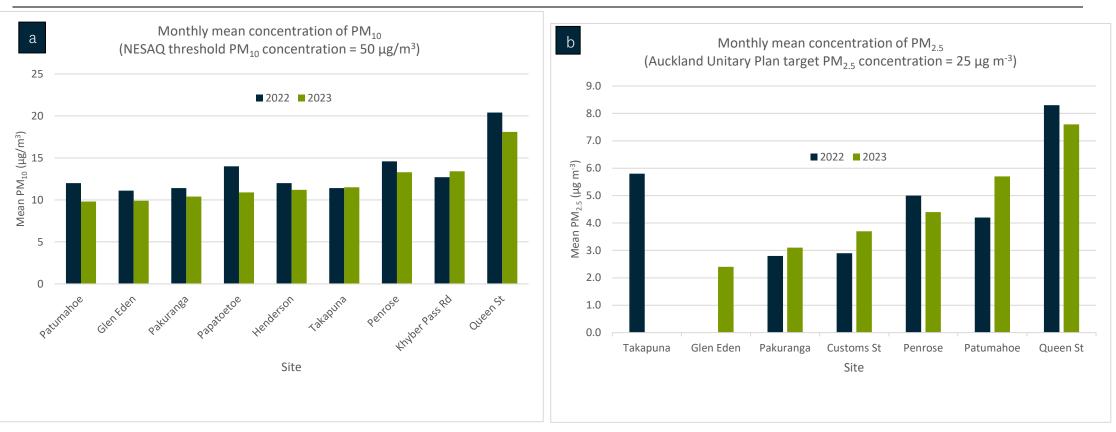
PM₁₀ is monitored at Glen Eden, Henderson, Khyber Pass Rd, Pakuranga, Papatoetoe, Patumahoe, Penrose, Takapuna, and Queen St.

PM_{2.5} is monitored at Customs St, Glen Eden, Pakuranga, Patumahoe, Penrose, Takapuna, and Queen St.

NO₂ is monitored at Customs St, Glen Eden, Henderson, Khyber Pass Rd, Patumahoe, Penrose, Takapuna, and Queen St.


Black carbon is monitored at Customs St, and Henderson.

CO is monitored at Khyber Pass Rd.


Ozone is monitored at Patumahoe.

 SO_2 is monitored at Customs St, and Penrose.

*PM_{2.5} data coverage for Glen Eden, Customs Street and Pakuranga is less than 75% due to instrument failure between September 2021 and January 2022. Weather changes significantly affect concentrations of air contaminants (see <u>Auckland air quality report, October 2021</u>). No data for Takapuna in Jan and Feb 2023 due to the Auckland floods.

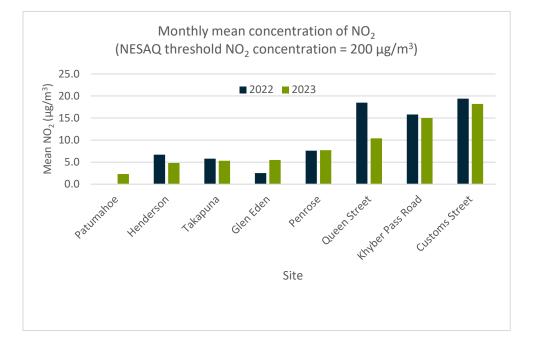


Figure 1. Maps a, b and c show the air quality monitoring sites and their last 12 months (1 March 2022 to 28 February 2023) average PM and NO₂ concentrations in brackets. Auckland city centre monitoring sites recorded the highest PM and NO₂ concentrations.

Section B. Key air contaminants across the 10 air quality monitoring sites (1 January 2023 to 28 February 2023)

Figure 2. Monthly mean particulate matter concentration. As in the previous year, the highest concentrations of both PM₁₀ and PM_{2.5} were recorded at Queen St. Plots a and b represent PM_{2.5} and PM₁₀ respectively. The average particulate matter concentration at Queen St is lower than the same period of the previous year. PM₁₀ and PM_{2.5} have multiple sources including motor vehicles, sea salt, marine diesel, and soils (windblown soil, road dust, and dust generated by earthworks, construction, and road works).

Figure 3. Monthly mean NO₂ concentration in Auckland. The highest concentrations were recorded at monitoring sites in the city centre, although they were lower than the previous year. Motor vehicles are the primary source of NO₂.

Figure 4. Monthly mean SO₂ levels at Customs Street and Penrose sites. The highest concentrations were recorded at the Customs Street monitoring site in the city centre. The mean concentrations at both sites were higher than the previous year. SO₂ is produced from the combustion of fossil fuels that contain sulphur, such as coal and oil (used for home heating, industry, and shipping). Motor vehicles also contribute to SO₂ levels in urban air.

Section C. Focus on a monitoring site: Patumahoe

Figure 5. The Patumahoe air quality monitoring site is located within the Plant and Food Research Station at Cronin Rd, Patumahoe. Image a shows the air quality monitoring shed. Image b is an aerial view of the monitoring site and surroundings taken in April 2023 (Source: Google Maps). Air quality monitoring at this site commenced on 21 October 1996. PM₁₀, PM_{2.5}, NO₂, and ground level ozone concentrations are monitored at this site. This site represents rural town and Auckland regional background air quality. The main sources of air contaminants are motor vehicles, home heating, and agricultural activities such as fertiliser application, crop tilling and green waste burning.

Key findings:

- On average, the PM₁₀ and PM_{2.5} concentrations at Patumahoe are respectively 18.5% and 16.4% lower than the average levels observed across Auckland.
- On average, the concentration of NO₂ at Patumahoe is 84.2% lower than the average concentration measured across Auckland.
- It is worth noting that the Patumahoe monitoring site is located in a rural area and is representative of Auckland's regional background air quality. Thus, lower air pollutant concentrations are expected at this site compared to Auckland's urban areas.
- The results of trend analysis reveal a longterm decrease in NO₂ concentration over the monitoring period. On the contrary, PM_{2.5} is trending upwards, which is most likely due to increased biomass burning. Further studies needed.
- No significant trends were observed in PM₁₀ and ground-level ozone concentrations.

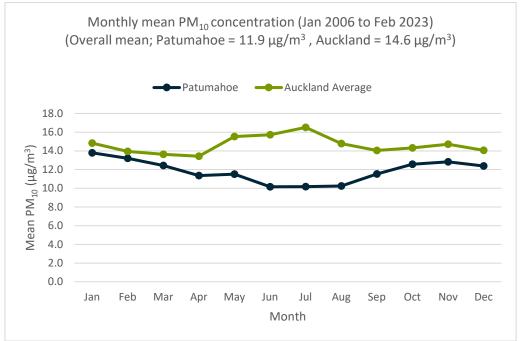



Figure 6. Monthly mean PM_{10} concentrations over time - comparison between Patumahoe (Rural Site) and Auckland's Average. The average PM_{10} concentration at Patumahoe site is 18.5% lower than Auckland's average.

Figure 7. Trends in PM₁₀ Concentrations at Patumahoe from January 2006 to February 2023. The plot shows the deseasonalised monthly mean concentrations of PM₁₀. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as – 0.03 (μ g/m³) per year (not statistically significant at the 0.05 level)

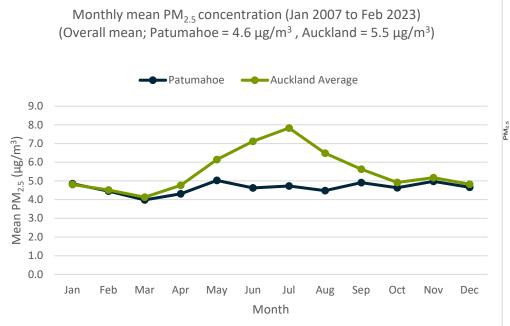
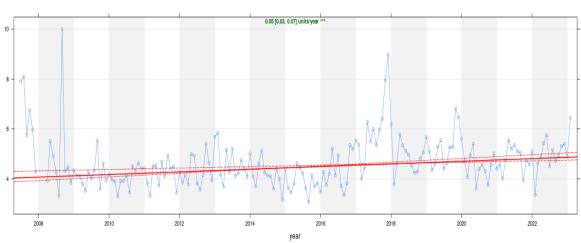
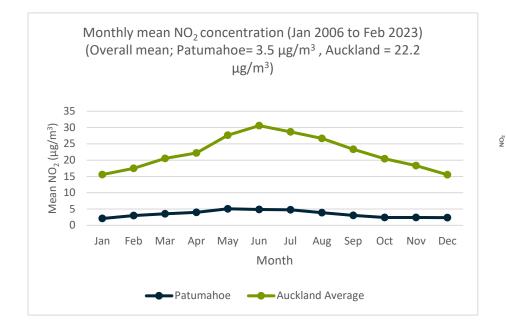
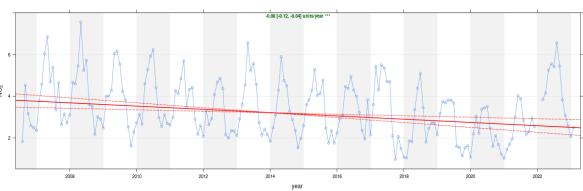
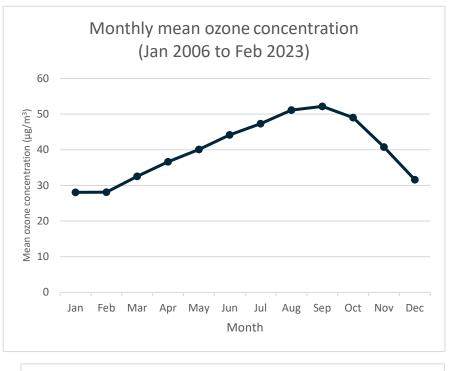


Figure 8. Monthly mean $PM_{2.5}$ concentrations over time - comparison between Patumahoe and Auckland's Average. The average $PM_{2.5}$ concentration at Patumahoe site is 16.4% lower than Auckland's average.


Figure 9. Trends in $PM_{2.5}$ Concentrations at Patumahoe from January 2007 to February 2023. The plot shows the deseasonalised monthly mean concentrations of $PM_{2.5}$. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as 0.05 (μ g/m³) per year (statistically significant at the 0.05 level) and the 95% confidence intervals in the slope from 0.03 – (0.07) μ g/m³/year.

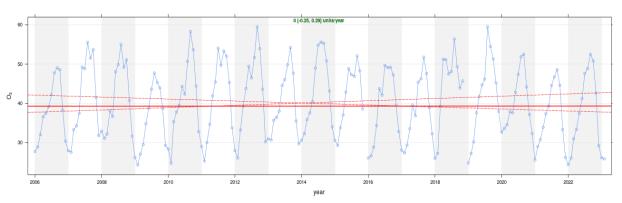

Figure 10. Monthly mean NO₂ concentrations over time - comparison between Patumahoe and Auckland's Average. The average NO₂ concentration at Patumahoe site is 84.2% lower than Auckland's average.

Figure 11. Trends in NO₂ Concentrations at Patumahoe from January 2006 to February 2023. The plot shows the deseasonalised monthly mean concentrations of NO₂. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as – 0.08 (μ g/m³) per year (statistically significant at the 0.05 level) and the 95% confidence intervals in the slope from -0.12 – (- 0.04) μ g/m³/year.

Figure 12. Temporal variation of monthly mean ozone concentrations at Patumahoe.

Figure 13. Trends in ozone concentrations at Patumahoe from January 2006 to February 2023. The plot shows the deseasonalised monthly mean concentrations of ozone. The solid red line shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend is shown at the top-left as 0 (μ g/m³) per year (not statistically significant).

Section D. Table 3. Monthly averages: 2023 and past two to five years (when data is available)

Pollutant	Site	Period	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		2023	8.9	10.9										
	Glen Eden	Past 5 years	11.6	11.1	9.6	11.1	12.9	15.4	15.6	13.8	11.5	10.2	11.9	12.9
	Henderson	2023	10.1	12.2										
	nenuerson	Past 5 years	12.0	11.5	11.0	11.7	12.5	12.9	13.1	12.1	11.1	10.5	12.5	12.8
	Khyber	2023	12.2	14.6										
	Pass Road	Past 4 years	11.8	11.4	10.8	11.4	10.9	11.1	11.9	11.3	11.2	11.0	12.9	13.8
	Pakuranga	2023	9.6	11.1	10.0	10.7	12.4	12.2	14.2	12.0	11.4	10.0	12.0	12.7
PM ₁₀		Past 5 years 2023	12.1 9.8	11.5 12.0	10.0	10.7	12.4	13.3	14.2	13.0	11.4	10.9	12.6	12.7
$(\mu g/m^3)$	Papatoetoe	Past 5 years	14.2	13.6	12.4	13.1	14.0	14.0	15.6	14.3	13.5	13.0	14.5	14.7
(µ6/111)		2023	8.9	10.7	12.4	15.1	14.0	14.0	15.0	14.5	13.5	13.0	14.5	14.7
	Patumahoe	Past 5 years	14.9	14.3	12.5	12.2	11.8	9.9	10.5	10.8	11.4	11.1	13.3	14.9
		2023	12.4	14.2	12.5	12.2	11.0	5.5	10.5	10.0			13.5	11.5
	Penrose	Past 5 years	15.6	14.9	14.1	14.3	15.5	14.2	14.9	13.9	13.5	12.9	15.0	15.9
	Queen	2023	16.8	19.5										
	Street	Past 5 years	17.5	16.7	16.0	16.5	16.9	16.7	18.4	18.2	17.8	17.9	19.1	19.4
	Takapuna	2023	11.5	ND										
	ranapulid	Past 5 years	13.1	12.3	11.0	12.4	12.8	13.3	14.1	12.9	11.7	11.3	13.0	13.4
	Customs	2023	3.7	3.8										
	Street	Past 3 years	4.4	3.7	3.3	3.9	4.0	4.7	4.8	5.6	5.5	3.8	3.8	3.7
	Glen Eden	2023	2.1	2.7	2.0	24	F 7	0.0	07		F 0	2.2	25	2.2
		Past 4 years	2.7	2.5	2.0	3.1	5.7	9.8	9.7	7.7	5.0	3.2	3.5	3.2
	Pakuranga	2023 Past 4 years	2.9 3.0	3.2 2.9	2.5	3.5	5.3	6.3	9.3	5.7	4.4	3.2	3.9	3.5
PM _{2.5}		2023	4.9	6.4	2.5	3.5	5.5	0.3	9.5	5.7	4.4	5.2	3.5	3.5
$(\mu g/m^3)$	Patumahoe	Past 5 years	5.4	4.5	4.3	5.0	5.4	5.1	4.7	4.8	4.7	4.4	5.2	5.3
(µg/11)		2023	4.2	4.7										
	Penrose	Past 5 years	6.8	5.3	5.0	5.6	6.5	7.3	7.3	6.3	5.8	5.8	6.5	5.9
	Queen	2023	7.2	8.0										
	Street	Past 5 years	7.1	6.5	6.0	6.7	7.2	7.4	8.0	7.7	7.3	7.3	7.7	7.9
	Takanuna	2023	ND	ND										
	Takapuna	Past 5 years	5.9	5.4	4.9	5.7	6.8	8.2	8.8	7.7	6.6	6.1	6.7	6.3
	Customs	2023	18.7	17.8										
	Street	Past 3 years	34.8	36.9	39.1	30.8	37.1	52.4	37.4	35.6	30.8	29.1	24.1	23.9
	Glen Eden	2023	6.0	5.0										
	Gien Eden	Past 5 years	2.0	3.0	4.0	4.6	7.4	8.2	7.9	6.1	4.7	4.6	3.8	2.9
	Henderson	2023	4.5	5.1										
		Past 5 years	3.9	7.3	8.4	8.7	12.0	12.8	11.7	9.2	7.5	6.5	6.1	4.7
NO.	Khyber	2023	11.4	18.7										
NO₂ (μg/m³)	Pass Road	Past 4 years	21.5	19.5	22.4	23.8	32.8	33.8	35.1	30.8	30.2	24.9	30.0	20.1
	Patumahoe	2023	2.1	2.5	2.0	2.0	2.0	4.2	4.2		2.5	2.		2.1
		Past 5 years 2023	1.4 6.3	2.0 9.2	2.9	2.8	3.8	4.2	4.3	3.4	2.5	2.4	2.4	2.1
	Penrose	Past 5 years	9.0	9.2 10.8	13.4	16.9	22.3	22.8	22.8	18.7	16.6	12.6	12.9	8.5
	Queen Street	2023	10.8	10.8	13.4	10.5	22.3	22.0	22.0	10.7	10.0	12.0	12.5	0.5
		Past 5 years	28.2	28.8	30.8	31.0	37.4	39.5	43.2	42.1	37.7	36.4	32.2	28.0
	Takapuna	2023	5.3	ND										
		Past 5 years	6.5	8.4	10.7	14.6	20.2	21.1	22.1	18.5	15.2	12.7	11.8	7.9
SO ₂	Customs	2023	2.3	2.4										
	Street	Past 3 years	1.6	1.6	2.3	1.5	1.7	4.4	2.6	2.8	2.2	2.2	1.6	1.5
(µg/m³)	Penrose	2023	1.2	1.6										
		Past 5 years	0.5	0.8	1.1	0.8	1.2	1.2	1.0	0.8	1.0	0.8	1.0	0.5
O ₃	Patumahoe	2023	26.1	25.8	22.4	20.0	11 2	12 1	16.0	53.0	E1 4	46.0	11.0	21.4
(μg/m³)		Past 5 years	26.6	29.3	33.4	38.9	41.2	43.1	46.8	52.6	51.4	46.9	41.0	31.4
CO (mg/m ³)	Khyber Pass Road	2023 Past 4 years	0.105	0.159 0.180	0.192	0.216	0.268	0.258	0.297	0.220	0.204	0.178	0.183	0.164
(***6/**** /	Customs	2023	1095	1286	0.132	0.210	0.200	0.200	0.237	0.220	0.204	0.170	0.100	0.104
Black	Street	Past 3 years	1055	1535	1316	1094	1356	3363	1350	1326	1034	1016	1127	1047
carbon		2023	247	316										
(ng/m³)	Henderson	Past 5 years	265	458	566	540	995	1204	1113	879	542	412	381	301
			ND = N0	uata mea	sured due	to 1100011	ig at the i	nonitorir	ig station					

© 2023 Auckland Council, New Zealand

ISSN 2816-0975

Image credit: Page 1 banner photograph by Luke Harvey.

Disclaimer

Auckland Council disclaims any liability whatsoever in connection with any action taken in reliance of this document for any error, deficiency, flaw or omission contained in it.

