

Te Rangahau Aroturuki i ngā Rākau Rangatira o Te Wao Nui ā Tiriwa

2021 Waitākere Ranges Kauri Population Health Monitoring Survey

June 2022, Technical Report 2022/8

2021 Waitākere Ranges Kauri Population Health Monitoring Survey

June 2022

Technical Report 2022/8

Karyn Froud¹, Yue Chin Chew², John Kean³, Jane Meiforth⁴, Sarah Killick², Edward Ashby⁵, Robin Taua-Gordon⁵, Alastair Jamieson², Lisa Tolich²

¹Biosecurity Research

²Auckland Council

³AgResearch

⁴Manaaki Whenua – Landcare Research

⁵Te Kawerau ā Maki

Additional authors for specific chapters of this technical report are provided at the start of the relevant chapters.

Auckland Council Technical Report 2022/8

ISSN 2230-4525 (print) ISSN 2230-4533 (online)

ISBN 978-1-99-110160-0 (print) ISBN 978-1-99-110161-7 (PDF)

This report has been peer reviewed by:		
Professor Ian Dohoo, University of Prince Edward Island, Canada		
Professor Mark Stevenson, University of Melbourne, Australia (excluding Ch4)		
Dr. Sarah Green, Forest Research, United Kingdom		
Dr. Nagendra Singanallur Balasubramian, CSIRO, Australia (Chapter 4)		
Review completed on 29 April 2022		
Approved for Auckland Council publication by:		
Name: Rachel Kelleher		
Position: General Manager, Environmental Services		
Name: Phil Brown		
Position: Head of Natural Environment Delivery, Environmental Services		
Date: 29 June 2022		

Recommended citation

Froud, K., Y.C. Chew, J. Kean, J. Meiforth, S. Killick, E. Ashby, R. Taua-Gordon, A. Jamieson, L. Tolich, (2022). 2021 Waitākere Ranges kauri population health monitoring survey. Auckland Council technical report, TR2022/8.

Image credits Cover: Views towards Cornwallis by Andrew Macdonald. Inside front cover: Aunt Agatha by Gino Demeer. Inside back cover: Huia emergent kauri by Alastair Jamieson. Back cover: Karamatura kauri forest by Alastair Jamieson.

© 2022 Auckland Council, New Zealand

Auckland Council disclaims any liability whatsoever in connection with any action taken in reliance of this document for any error, deficiency, flaw or omission contained in it.

This document is licensed for re-use under the <u>Creative Commons Attribution 4.0 International</u> <u>licence</u>.

In summary, you are free to copy, distribute and adapt the material, as long as you attribute it to the Auckland Council and abide by the other licence terms.

Acknowledgements Ngā mihi

We acknowledge the detailed and ongoing discussion with and sharing of their mātauranga of Te Kawerau ā Maki first and foremost as mana whenua and kaitiaki of Te Wao Nui ā Tiriwa / the Waitākere Ranges. We also acknowledge the sharing of mātauranga from mana whenua representatives of Pou Tāngata Ngāi Tai ki Tāmaki Community Development Trust, Ngāti Paoa Iwi Trust Board, Ngāti Whanaunga Incorporated Society, Ngā Maunga Whakahii o Kaipara Trust, Te Ākitai Waiohua Waka Taua Inc, Ngāti Maru Rūnanga Trust and Environs Te Uri o Hau.

Thank you to Professor Ian Dohoo (University of Prince Edward Island) and Dr Sarah Green (Forest Research UK) who provided external review of all aspects of our research methodology prior to the start of the survey and expert review of our results and manuscript. We also thank Professor Mark Stevenson (University of Melbourne) for expert review of the sample size change and spatial analyses methods and expert review of our results and manuscript. Thank you to Dr. Nagendrakumar Singanallur Balasubramanian (Australian Centre for Disease Preparedness, CSIRO and OIE Centre for Diagnostic Test Validation Science in the Asia-Pacific Region) for expert review of the diagnostic test performance evaluation results and manuscript.

We thank everyone who shared their expertise with us in different workshops and hui as we developed our survey methods and identified potential risk factors for inclusion in the study. We would also like to thank Nari Williams, Ian Horner, Bruce Burns, Luitgard Schwendenmann, Lee Hill and Fredrik Hjelm who helped build and refine the monitoring form.

Many thanks to Ben Yorke, Callum McCosh, David Jacobi, Fayas Mohamed, Genavee Rhodes, George Wilson, Hunter Chrisp, Jarden Howard, Hayley Roos, James Farrimond Kelly, Leo Casey Waby, Olivia Hossin, Sandy Huang, Sacchi Shin-Clayton, Taine Williams, Toby Elliott, the Biosense Ltd. field team members who spent many long days in the bush collecting our field data.

Thank you to Jan Schindler, Alexander Aimes, Ben Jolly, and David Pairman from Manaaki Whenua Landcare Research who contributed to the remote sensing host detection research.

We also thank Matthew Arnet, Jayne Wilton, Sarah Nicoll, Terrence Makea, Ellena Hough and Mary Horner, the Plant & Food Research Ltd Havelock North pathology team who processed the soil samples.

Thank you also to the Waitākere Ranges Monitoring Survey steering committee members for excellent advice throughout the design, delivery, analysis and reporting of the survey.

Thanks also to Ian Horner, Richard Winkworth, Lindi Eloff, Kim Morgan, Nari Williams, Chris Green, Kim Parker, Peter Scott, Andrew McDonald, Adrian Peachey, Murray Fea, Lee Hill, Randy Lacey, Stanley Bellgard and Bronwyn Mullions, who contributed to the NKDP workshop (May 2019) for the development of the case definition and estimation of sensitivity and specificity priors for soil and aerial testing with Mark Stevenson, Emilie Vallee and Travis Ashcroft. Also, to those who were unable to attend and provided additional feedback during consultation, including members of the National Kauri Dieback Programme Tangata Whenua Roopu and Strategic Science Advisory Group.

We also thank Tiakina Kauri for contributing funding towards the diagnostic test performance evaluation.

Finally, we gratefully acknowledge the ratepayers of Auckland who provided funding for this study via the Natural Environment Targeted Rate, without which this work would not have been possible.

Table of contents Te ripanga ihirangi

Acknowledgements
Table of contents
Table of figuresxi
Table of tablesxvii
Glossary of Te Reo Māori wordsxix
Terminologyxx
Chapter 1 Long-term kauri health monitoring framework and objectives of the 2021 Waitākere Ranges Monitoring Survey1
1.1 Introduction
1.2 The Waitākere Ranges2
1.3 Kauri dieback and Phytophthora agathidicida3
1.4 Auckland Council kauri dieback surveillance4
1.5 Epidemiological approach to kauri dieback5
1.6 Design of the long-term kauri health monitoring framework7
1.7 2021 Waitākere Ranges monitoring survey10
Chapter 2 Baseline prevalence study of <i>Phytophthora agathidicida</i> and kauri dieback in the Waitākere Ranges and frequency of potential risk factors using a cross-sectional study12
2.1 Abstract
2.2 Introduction
2.3 Methods
2.4 Results
2.5 Discussion
2.6 Conclusion
Chapter 3 Multivariable analysis of risk factors associated with symptomatic kauri and detection of <i>P. agathidicida</i> in the Waitākere Ranges
3.1 Abstract
3.2 Introduction
3.3 Methods 61
3.4 Results

3.5	Discu	ussion	76
3.6	Conc	lusion	84
	nent a	Estimation of the diagnostic sensitivity and specificity of kauri dieback visual nd <i>Phytophthora agathidicida</i> soil baiting, culturing and morphological identifica n latent class analysis	
4.1	Abst	ract	86
4.2	Intro	duction	87
4.3	Obje	ctives	89
4.4	Meth	ods	89
4.5	Resu	lts and discussion	95
4.6	Conc	lusions and recommendations	111
Chapte	r 5	Key findings of the 2021 Waitākere Ranges survey	112
5.1	Key f	indings from the prevalence study	113
5.2	Key f	indings from the risk factor multi-variable analysis study	114
5.3	Key f	indings from the diagnostic test performance evaluation study	116
5.4	Conc	lusions from the 2021 Waitākere Ranges Monitoring Survey	116
5.5	Te A	o Māori	118
Chapter region	r 6	Future steps for the long-term strategy for monitoring kauri health in the Auckla	
6.1	Strat	egy for implementation of the long-term kauri health monitoring framework	120
Referen	ices		133
Append	lix A	Monitoring form and detailed methods for study variables	141
A1	Use	of monitoring form	141
A2	Surv	ey information	144
A3	Site i	nformation	146
A4	Sam	oled tree information	146
A5	Repl	acement tree information	151
A6	Kaur	i host-related variables	153
A7	Disea	ase-related variables	158
A8	Distu	Irbance-related variables	166
A9	Ecol	ogical variables	168
A10	Phot	OS	175
A11	Varia	bles calculated using existing data sources	178

A12	Upd	Updated summary of the Stevenson and Froud (2020) draft kauri dieback case definition 180		
A13	Com	mon species method development	180	
Apper enviro		Supplementary results from the prevalence study – descriptive summary of ho and anthropogenic risk factors and ecological impact factors from Chapter 2	-	
B1	Host	t detection	183	
B2	Basa	al lesions	184	
B3	Can	opy health	186	
B4	Арр	roved observer kauri dieback field status	186	
B5	Host	factors	188	
B6	Envi	ronmental factors	192	
B7	Antł	propogenic factors	199	
B8	Ecol	ogical impact factors	204	
Apper	ndix C	Results of univariable screening tests from Chapter 3	212	
Apper	ndix D	Results of multivariable screening tests from Chapter 3	217	
Apper	ndix E	OpenBUGS code for the BLCA model from Chapter 4	219	
Apper	ndix F	Supplementary information from Chapter 4	221	
F1	Gelr	nan-Rubin-Brooks plot	221	
F2 wer		nan and Rubin's potential scale reduction factor where a result of 1 means no iss Intered		
Apper	ndix G	Supplementary information risk maps from GIS derived variables	223	
G1	Arch	aeological features risk map	224	
G2	Aspe	ect risk map	225	
G3	Cano	opy height risk map	226	
G4	Cont	firmed all <i>P. agathidicida</i> sites risk map (including historical detections)	227	
G5	Con	firmed all <i>P. cinnamomi</i> sites risk map (including historical detections)	228	
G6	Curr	ent extent vegetation risk map	229	
G7	Dep	th to water model risk map	230	
G8	Elev	ation risk map	231	
G9	Hist	oric timber sites risk map	232	
G10) Land	dcover database risk map	233	
G11	Mea	n high water risk map (coast boundary)	234	
G12	Nati	ıral drainage risk map	235	
G13	Stre	am sub-catchments risk map	236	

ix

G14	Park boundary and forested extent risk map	.237
G15	Road and track network risk map	238
G16	Slope risk map	239
G17	Overland flow path risk map	240

Table of figures He ripanga mō ngā tau

Figure 1-1. The epidemiological approach adopted for this study, showing the steps taken to Figure 1-2. Disease triangle showing that disease only occurs when sufficient factors relating to a Figure 2-1. Geographical boundary for the study area (coloured in light blue) of the Waitākere Figure 2-2. Random sample (yellow crosses) of 1300 kauri trees > 15 m tall in the Waitākere Ranges. Dark green is forest >15 m tall. Light green is forest 8-15 m in height. Grey is shrubland Figure 2-3. Example of large trees >20 m tall, identified by remote sensing in a map of the Cascades area of the Waitākere Ranges. The map has 3 classes: GREEN = kauri with healthy crowns or thinning canopy or thinning with some branch dieback (canopy score 1-3), RED = trees with severe dieback or dead trees (canopy score 4 & 5) and YELLOW = other tree species (canopy Figure 2-4. Total random samples required to detect a risk factor for kauri dieback disease with 80% power and 95% confidence, depending on the prevalence ratio (strength of the risk effect) and disease prevalence (different lines). In (a) half of all samples are exposed to the risk; in (b) only 15% of samples are exposed. The dotted line shows a proposed sample size of 2000 trees. . 21 Figure 2-5. Sampling frame diagram showing how trees from the full population of interest were reduced to a sample frame for random selection of trees. It also shows the steps to reduce the sample size halfway through the survey and the final group of trees in the study. Where WRRP is Waitākere Ranges Regional Park......23 Figure 2-7. Canopy symptom class and severity rating: 1) healthy crown with no visible signs of dieback; 2) canopy thinning; 3) thinning and some branch dieback; 4) severe dieback; 5) dead. Figure 2-8. Spatial point map showing the location of kauri trees in the study area that had soil samples taken for diagnostic testing (n = 761) with red circles indicating the detection of P. *agathidicida* (n = 76) and blue circles indicating that *P. agathidicida* was not detected (n = 685).36 Figure 2-9. A symmetric adaptive bandwidth spatial log-relative risk surfaces map of P. agathidicida detection, estimated using kauri trees that had soil samples taken for diagnostic testing (n = 761). The relative risk is estimated on the natural log scale, such that values > 0depict areas of elevated risk (log(0) = 1, and therefore log relative risk values > 0 equate torelative risks > 1, that is, increased risk). Where detected, tolerance contours delineating statistically significant risk elevations are drawn at significance levels of 0.1 (dashed line) and

0.05 (solid line). White inland spaces indicate areas outside the study area (e.g., Piha village in
the central west of the map)
Figure 2-10. Choropleth map showing <i>P. agathidicida</i> prevalence (left) and a Bayesian smoothed
P. agathidicida prevalence (right) calculated using 761 monitored kauri trees in stream sub-
catchments. Cells with NA did not have any randomly selected kauri trees within the stream sub-
catchment
Figure 2-11. Spatial point map showing the location of surveyed kauri trees (n = 2140) with red
circles indicating symptomatic kauri (n = 413) and blue circles indicating non-symptomatic kauri
(n = 1727) based on the case definition
Figure 2-12. Symmetric adaptive relative risk surfaces (Davies et al., 2016) estimated using all the
kauri trees included in the study (n = 2140; symptomatic = 413; non-symptomatic = 1727) within
the study area. The relative risk is estimated on the natural log scale, such that values > 0 depict
areas of elevated risk (log(0) = 1, and therefore log relative risk values > 0 equate to relative risks
> 1, that is, increased risk). Where detected, tolerance contours delineating statistically
significant risk elevations are drawn at significance levels of 0.05 and 0.1. White inland spaces
indicate areas outside the study area (e.g., Piha village in the central west of the map)
Figure 2-13. Choropleth map showing the spatial distribution of symptomatic kauri prevalence
(left) and Bayesian smoothed symptomatic kauri prevalence (right) within discrete stream sub-
catchments in the Waitakere Ranges Regional Park. Cells with NA did not have any randomly
selected kauri trees within the stream sub-catchment. Note that stream sub-catchment areas
include urban areas outside the study boundary e.g., Piha which were not surveyed and may have
higher prevalence
Figure 2-14. Spatial point pattern plot showing the location of kauri trees in the study area that
had soil samples taken for diagnostic testing (n = 761) with orange circles indicating the detection
of <i>P. cinnamomi</i> (n = 401) and blue circles indicating that <i>P. cinnamomi</i> was not detected (n
=360)
Figure 2-15. Bar chart showing the number of monitored trees within each canopy score class with
a score of 1 being healthy and 4 significant dieback, stratified by canopy colour. Dead trees
(canopy score of 5) were reported separately
Figure 2-16. Frequency histogram showing the distribution of distance to the closest confirmed <i>P.</i>
<i>agathidicida</i> site for 2140 monitored trees with a bin width set at 100 m
Figure 2-17. Box and whisker plots of mean forest floor depth (cm) per tree where <i>P. agathidicida</i>
was detected or not detected, stratified by kauri tree size class from 759 monitored trees that
were soil sampled and where the size class value was recorded (2 observations missing). Showing
the median value (horizontal line), interquartile range (within box), maximum and minimum
values (excluding outliers, vertical bars) and outliers (dots) for the population
Figure 3-1. A mesh generated for a stochastic partial differential equation via integrated nested
Laplace approximations for spatial multivariable models. Blue line indicates the boundary of
Waitākere Ranges Regional Park and green dots are the location where kauri were sampled. Red
line indicates a disjunct area of Waitākere Ranges Regional Park where no kauri were sampled.
The black line denotes areas outside the study area

Figure 4-1. Locations of trees sampled in the Waitākere Ranges, North Island, New Zealand, for
the evaluation of 2 kauri dieback diagnostic tests. Dots of tree locations from estimated low
prevalence areas are in blue and dots for tree locations in estimated high prevalence areas are in
yellow
Figure 4-2. Point maps of the 2021 Waitākere Ranges survey showing the prior expected high
prevalence areas (yellow-coloured polygons) and A) where <i>P. agathidicida</i> was predicted based on
the visual assessment test and B) where <i>P. agathidicida</i> was detected based on the soil sampling
bioassay
Figure 4-3. Prior (grey) and posterior (red) distributions of the sensitivity (A) and specificity (B) of
the visual assessment test for <i>P. agathidicida</i>
Figure 4-4. Relationship between the apparent prevalence of <i>P. agathidicida</i> using visual
assessment of disease symptoms, and the true prevalence of <i>P. agathidicida</i> 100
Figure 4-5. Prior (grey) and posterior (red) distributions of the sensitivity (A) and specificity (B) of
the soil sampling bioassay test for <i>P. agathidicida</i> 101
Figure 4-6. Relationship between the apparent prevalence using the soil sampling bioassay, and
the calculated true prevalence of <i>P. agathidicida</i> 101
Figure 4-7. Prior (grey) and posterior (red) distributions of the true prevalence of <i>P. agathidicida</i>
in the high prevalence area (A) and low prevalence area (B)
Figure 4-8. Posterior distributions for the sensitivity analysis of the visual assessment sensitivity
(A), specificity (B), soil sampling bioassay sensitivity (C), specificity (D), true prevalence in the
high prevalence area (E) and low prevalence area (F). The black line was the posterior distribution
for the main result using the original priors, the red line for model 1, the forest green line for
model 2, the dark blue line for model 3. See Table 4-2 for details on the change in priors for the
different sensitivity analysis models107
Figure 6-1. Map showing point locations of 125 soil samples collected from an area (inside the
polygon) of the Waitākere Ranges Regional Park containing an estimated 12,680 kauri trees where
<i>P. agathidicida</i> was not detected during the 2021 Waitākere Ranges survey
Figure 6-2. Predicted probability of symptomatic kauri presence for a representative kauri across
the Waitākere Ranges study area131
Figure 6-3. Predicted probability of <i>P. agathidicida</i> detection for a representative kauri across the
Waitākere Ranges study area131
Figure B-1. Frequency histogram showing the number of trees in each 20 cm increment of basal
bleed heights from 453 trees with basal bleeds present
Figure B-2. Percent of the tree base affected by a basal lesion (bleed) from 453 monitored trees
with basal lesions
Figure B-3. Bar chart showing frequencies of kauri dieback field status assessment by presence or
absence of basal bleeds
Figure B-4. Bar chart showing frequencies of kauri dieback field status assessment by canopy
health scores
Figure B-5. Canopy images showing the range in size from one of the smallest trees in the study
(DBH of 13 cm) and one of the largest trees with a DBH of 317 cm

Figure B-6. Frequency histogram showing diameter at breast height (DBH) of monitored kauri
trees (with a bin width of 10 cm)189
Figure B-7. Spatial distribution of monitored kauri trees in green with those showing epicormic
growth in orange190
Figure B-8. Difference in the proportion of trees with active growth flush over time
Figure B-9. Proportion of trees with female seed cones visible over time of monitoring (n=87)192
Figure B-10. Frequency histogram showing the number of trees at increasing distance (metres)
from the high tide water mark of the coast (or harbour) of 2140 monitored kauri trees with a bin
width of 250 m
Figure B-11. Frequency histogram showing the elevation distribution in metres of 2140 kauri trees
monitored in the Waitākere Ranges Regional Park
Figure B-12. Frequency histogram showing the distribution of slope in degrees of 2140 monitored
kauri sites
Figure B-13. Frequency histogram showing the number of trees at different depths to water using
a depth to water index in metres with a bin width of 10 m
Figure B-14. Frequency histogram showing the number of trees at different distances to the
closest overland flow path in metres with a bin width of 5 m
Figure B-15. Frequency histogram showing the number of trees at different distances to the
closest historic timber mill in metres with a bin width of 250 m
Figure B-16. Frequency histogram showing the distribution of distance to the closest track for
2140 monitored trees with a bin width set at 25 m
Figure B-17. Frequency histogram showing the distribution of the distance to the closest uphill
track for 1895 monitored trees with a bin width set at 25 m
Figure B-18. Frequency histogram showing the number of trees at different distances to the
closest Waitākere Ranges Regional Park boundary in metres with a bin width of 250 m
Figure B-19. Bar plot of the number of archaeological features within 500 m of each of our 2140
monitored trees
Figure B-20. Box and whisker plot showing the distance (m) between the monitored kauri tree and
its closest neighbouring tree (>10 cm DBH) stratified by whether the kauri tree is the dominant or
subordinate tree. Showing the median value (horizontal line), interquartile range (within box),
maximum and minimum values (excluding outliers, vertical bars) and outliers (dots) for the
population
Figure B-21. Box and whisker plots showing diameter at breast height for A] monitored kauri trees
where they were the dominant or subdominant tree and for B] the DBH of the closest neighbour
tree where the monitored kauri tree was dominant vs subdominant. Showing the median value
(horizontal line), interquartile range (within box), maximum and minimum values (excluding
outliers, vertical bars) and outliers (dots) for the population
Figure B-22. Scatter plot showing average forest floor depth (cm) per tree as a function of tree
size measured as DBH (cm). Superimposed on this plot is a loess smoothed linear regression line
(blue) with 95% confidence intervals (grey shading)
Figure B-23. Box and whisker plots showing the mean forest floor depth (cm) per tree, stratified
by kauri tree size class from 2127 monitored trees where the size class value was recorded.

Table of tables He ripanga mō ngā ripanga hoki

Table 2-1. Decision algorithm for calculating if the symptomatic criteria were met for the
symptomatic kauri trees kauri dieback case definition
Table 2-2. Common kauri forest-associated plant species (scientific and common names) selected
for observation during the 2021 Waitākere Ranges survey
Table 2-3. Number of trees that meet the kauri dieback case definition stratified by the different
classes within symptomatic kauri and non-symptomatic kauri. Where confirmed is on a P.
<i>agathidicida</i> site, probable is within 50 m and suspect is >50 m of a <i>P. agathidicida</i> site. Note this
is the total prevalence of symptomatic kauri which is higher than the survey adjusted prevalence.
Table 2-4. Detection of <i>P. agathidicida</i> , <i>P. cinnamomi</i> and <i>P.</i> spp. alone or in combination in the
culture bioassay tests from 761 sites where soil samples were collected
Table 2-5. Detection status of <i>P. agathidicida</i> within soil samples taken from 761 trees stratified
by whether the trees were symptomatic or non-symptomatic under the case definition for kauri
dieback
Table 2-6. Counts and percent of sites where kauri seedlings and saplings were present or absent
stratified by <i>Phytophthora</i> species detection status from 761 soil sampled sites
Table 3-1. A comparison of final non-spatial multivariable logistic regression models incorporating
either the distance to the closest track, distance to the closest road, or distance to the closest
uphill track. Values are the Akaike information criteria or the area under the ROC curve for each
model. The model with its value underlined indicates the model that best explained the data 70
Table 3-2. A result of spatial multivariable logistic regression model for the presence of
symptomatic kauri, consistent with kauri dieback in the Waitākere Ranges Regional Park,
Auckland. The median (95% credible interval (CI)) of the coefficients and prevalence odds ratio of
the potential risk factors are presented, in order of the strength of association72
Table 3-3. A result of spatial multivariable logistic regression model for the detection of
<i>Phytophthora agathidicida</i> in kauri soil samples in the Waitākere Ranges Regional Park, Auckland.
The median (95% credible interval (CI)) of the coefficients and prevalence odds ratio of the
potential risk factors are presented, in order of the strength of association
Table 4-1. Prior belief and corresponding beta distributions for the different parameters needed to
estimate the sensitivity and specificity of 2 tests for kauri dieback using BLCA91
Table 4-2 . Changes in prior distributions used for the 3 different models run for the sensitivity
analysis (min = minimum, ML = most likely, max = maximum)
Table 4-3. Number of trees testing positive or negative for <i>P. agathidicida</i> by visual assessment
(cases) and by soil baiting, culture and morphological identification (<i>P. agathidicida</i> detected vs
not detected), stratified by population

Table 4-4. Summary statistics and Monte Carlo error for the six diagnostic test performance and
prevalence parameters estimated using Bayesian latent class analysis
Table A-1. Survey forms in use during the Waitākere Ranges baseline monitoring survey.
Table A-2. Kauri dieback field status wording compared between the first 6 weeks of monitoring
and the remaining 10 weeks of monitoring165
Table A-3. GIS derived variable names, units and a description of how they were derived
Table B-1. Tree species that were misclassified as kauri trees using remote sensing for host
detection
Table B-2. Numbers and proportion of monitored kauri trees (n=2140) with basal or lateral root
bleeds present, stratified by kauri dieback field status
Table B-3. Number and percent of monitored trees (n=2140) with different canopy health scores.
Note that fully dead trees were reported separately
Table B-4. Number and percent of 2140 kauri trees assessed by surveyors to have different kauri
dieback field status scores
Table B-5. Number and percent of monitored kauri trees in each size class (Ricker <150 cm;
Intermediate 150-450 cm and mature >450 cm circumference), stratified by host origin forest type
from 2133 observations
Table B-6. Number of kauri tree monitoring sites where saplings were observed within 5 m of the
trunk of the kauri tree, stratified by the range of counts of saplings per site from 1452 sites190
Table B-7. Non-kauri plant species showing signs of decline at 89 kauri tree monitoring sites 192
Table B-8. Frequency of trees in each aspect group. 194
Table B-9. Total and proportion of trees by ecosystem type for 2140 monitored kauri trees 198
Table B-10. Ecological origin of the kauri trees surveyed in the Waitakere Ranges n=2140.
Table B-11. Number of trees with evidence of disturbance nearby. 199
Table B-12. Prevalence of symptomatic kauri trees for different types of road classes closest to
each of 2140 monitored kauri trees
Table B-13. Eight most common dominant closest neighbour species out of 117 sites where kauri
were subdominant from 2080 monitored kauri tree sites where species was recorded 206
Table B-14. Twelve most common subdominant closest neighbour species out of 1903 sites where
kauri were subdominant from 2080 monitored kauri tree sites where species was recorded 207 $$
Table B-15. Number and percent of kauri tree monitoring sites out of 1406 sites surveyed, where
each of 16 common plants were observed 207

Glossary of Te Reo Māori words Te rārangi kupu Māori

The list below defines Maori terms and concepts used within the text.

Te Ao Māori	The Māori world view
Нарū	Subtribe, the primary political unit in traditional Māori society
Hui	Meeting
lwi	Tribe comprising a number of hapū (sub-tribes) related through
	a common ancestor and associated with a distinct territory
Kaitiaki	Guardians
Kaitiakitanga	Guardianship. The practice of looking after the environment, rooted in tradition
Mahaki	Blight; disease
Mātauranga Māori	The body of Māori knowledge; referring to all things physical,
	emotional and spiritual in a Māori context
Moana	Sea
Mana whenua	Territorial rights, power over the land / by extension: Māori who have customary authority over land through ancestral links
Ngahere	Forest
Rāhui	A temporary ritual prohibition to restrict access and separate people from things that are tapu; in this context, placed by Te Kawerau ā Maki on Te Wao Nui ā Tiriwa as a measure to protect and restore balance to the forest
Rākau rangatira	Chiefly trees
Rongoā	Traditional Māori medicines; cultural health measures
Тари	Sacred or prohibited
Tohu	Indicator
Tikanga	Cultural values, customs and practices
Te Wao Nui ā Tiriwa	The Great Forest of Tiriwa, known as the Waitākere Ranges
Whakataukī	Māori proverb
Whānau	Family
•	

Terminology Ngā kupu whāiti

The definitions below are specified in accordance with standard epidemiological usage. Where the same word is defined differently between different disciplines, the definition used for this study and the alternative definition are provided for context.

prevalence, pathogen prevalence and impact variables in a population. A baseline is set so that future measurements can be compared against it to detect a change over time.Case definitionThe consistent criteria by which the health condition of an individual tree is included as a 'case' in a disease outbreak or study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or a bosecurity risk outbreak or incursion.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).		
population. A baseline is set so that future measurements can be compared against it to detect a change over time.Case definitionThe consistent criteria by which the health condition of an individual tree is included as a 'case' in a disease outbreak or study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveyllanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Baseline	The first comprehensive measurement of symptomatic tree
compared against it to detect a change over time.Case definitionThe consistent criteria by which the health condition of an individual tree is included as a 'case' in a disease outbreak or study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		prevalence, pathogen prevalence and impact variables in a
Case definitionThe consistent criteria by which the health condition of an individual tree is included as a 'case' in a disease outbreak or study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		population. A baseline is set so that future measurements can be
individual tree is included as a 'case' in a disease outbreak or study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		compared against it to detect a change over time.
study.ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Case definition	The consistent criteria by which the health condition of an
ConfoundingRefers to the distortion of the true association between an exposure and an outcome, because of the influence of a third factor. A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveyl designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		individual tree is included as a 'case' in a disease outbreak or
exposure and an outcome, because of the influence of a third factor.A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		study.
factor.A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Confounding	Refers to the distortion of the true association between an
A key difference of confounding from correlation is that the exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
exposure variable and confounder should have a separate causal relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
relationship or association mechanism from the outcome variable.Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
Cross-sectional studyCross-sectional studies are a type of observational study, rather than an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
studythan an experimental study. They provide a snapshot in time. Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
Individuals in the study are examined for the presence of an outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Cross-sectional	
outcome of interest, such as a pathogen or cases of disease. At the same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	study	
same time data is collected about the presence or absence of factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
factors that may increase or protect from the risk of disease. These are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
are called risk factors.Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
Delimiting surveillanceSurveys designed to determine the extent and distribution of a new biosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
surveillancebiosecurity risk outbreak or incursion.DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Dolimiting	
DiseaseA dynamic development of abnormal life processes due to a pathogen or abiotic disorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	-	
pathogenor abioticdisorder, lasting long enough to cause vital disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	surveillance	biosecurity risk outbreak or incursion.
disturbances in the life of the host, possibly leading to its death (Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Disease	A dynamic development of abnormal life processes due to a
(Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		pathogen or abiotic disorder, lasting long enough to cause vital
(Tronsmo et al., 2020).Ill-thriftIll-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		disturbances in the life of the host, possibly leading to its death
Ill-thrift Ill-thrift describes plants that fail to thrive. For the purposes of this study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
study, ill-thrift refers to kauri trees that are not healthy, but their poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet		
poor health is caused either by other biotic or abiotic causes, or very early kauri dieback, where conclusive symptoms are not yet	Ill-thrift	Ill-thrift describes plants that fail to thrive. For the purposes of this
very early kauri dieback, where conclusive symptoms are not yet		study, ill-thrift refers to kauri trees that are not healthy, but their
very early kauri dieback, where conclusive symptoms are not yet		poor health is caused either by other biotic or abiotic causes, or

IncidenceThe number of new cases of disease (i.e. trees that meet the case definition) in a defined population over a defined period of time. NOTE: This should not be confused with incidence as defined in plant pathology, as the number of diseased/symptomatic individuals within a defined population at a point in time. This is much closer to the epidemiological definition of prevalence (Madden et al., 2007).Incubation periodThe time between an individual (tree) being infected by a pathogen and when symptoms become visible (also referred to as the asymptomatic period).InteractionInteraction is said to be present when the association between an explanatory variable and an outcome variable differs between, or depends in some way on, the level of a third variable.Latency / Latent periodThe time period between an individual (tree) being infected by a pathogen and when the pathogen has completed its lifecycle and becomes infectious, in that it releases reproductive structures (e.g. zoospores) and can infect other trees. Note that the pathogen can spread prior to the host tree becoming symptomatic (during the incubation period).Misclassification biasA type of measurement error where a study unit (e.g., kauri tree) is classified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen prevalence or measures of association between variables (Haine et al., 2018).MonitoringRepeated surveys to determine changes in the frequency and distribution of a disease over time.PathogenAn infectious agent that causes disease in a host. In plants, this includes oomycetes, fungi, viruses, virus-like organisms, bacteria, and nematodes.Positive predictive valueThe		
Incubation periodand when symptoms become visible (also referred to as the asymptomatic period).InteractionInteraction is said to be present when the association between an explanatory variable and an outcome variable differs between, or depends in some way on, the level of a third variable.Latency / Latent periodThe time period between an individual (tree) being infected by a pathogen and when the pathogen has completed its lifecycle and becomes infectious, in that it releases reproductive structures (e.g. zoospores) and can infect other trees. Note that the pathogen can spread prior to the host tree becoming symptomatic (during the incubation period).Misclassification biasA type of measurement error where a study unit (e.g., kauri tree) is classified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen and the pathogen is classified as absent when it is present. Misclassification can bias estimates of disease or pathogen prevalence or measures of association between variables (Haine et al., 2018).MonitoringRepeated surveys to determine changes in the frequency and distribution of a disease over time.PathogenAn infectious agent that causes disease in a host. In plants, this includes oomycetes, fungi, viruses, virus-like organisms, bacteria, and nematodes.Positive predictive valueThe probability that an individual (tree) with a positive test is actually positive; e.g., the proportion of trees identified as kauri through remote sensing that are actually kauri.	Incidence	definition) in a defined population over a defined period of time. NOTE: This should not be confused with incidence as defined in plant pathology, as the number of diseased/symptomatic individuals within a defined population at a point in time. This is much closer to the epidemiological definition of prevalence
Interactionexplanatory variable and an outcome variable differs between, or depends in some way on, the level of a third variable.Latency / Latent periodThe time period between an individual (tree) being infected by a pathogen and when the pathogen has completed its lifecycle and becomes infectious, in that it releases reproductive structures (e.g. zoospores) and can infect other trees. Note that the pathogen can spread prior to the host tree becoming symptomatic (during the incubation period).Misclassification biasA type of measurement error where a study unit (e.g., kauri tree) is classified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen and the pathogen is classified as absent when it is present. Misclassification can bias estimates of disease or 	Incubation period	and when symptoms become visible (also referred to as the asymptomatic period).
periodpathogen and when the pathogen has completed its lifecycle and becomes infectious, in that it releases reproductive structures (e.g. zoospores) and can infect other trees. Note that the pathogen can spread prior to the host tree becoming symptomatic (during the incubation period).Misclassification A type of measurement error where a study unit (e.g., kauri tree) is classified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen and the pathogen is classified as absent when it is 	Interaction	explanatory variable and an outcome variable differs between, or
biasclassified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen and the pathogen is classified as absent when it is present. Misclassification can bias estimates of disease or pathogen prevalence or measures of association between variables (Haine et al., 2018).MonitoringRepeated surveys to determine changes in the frequency and distribution of a disease over time.PathogenAn infectious agent that causes disease in a host. In plants, this includes oomycetes, fungi, viruses, virus-like organisms, bacteria, and nematodes.Positive predictive valueThe probability that an individual (tree) with a positive test is actually positive; e.g., the proportion of trees identified as kauri through remote sensing that are actually kauri.	2	pathogen and when the pathogen has completed its lifecycle and becomes infectious, in that it releases reproductive structures (e.g. zoospores) and can infect other trees. Note that the pathogen can spread prior to the host tree becoming symptomatic (during the
PathogenAn infectious agent that causes disease in a host. In plants, this includes oomycetes, fungi, viruses, virus-like organisms, bacteria, and nematodes.Positive predictive valueThe probability that an individual (tree) with a positive test is actually positive; e.g., the proportion of trees identified as kauri through remote sensing that are actually kauri.		classified into the wrong group e.g., being classified as diseased when healthy. Or when an imperfect test is used to detect a pathogen and the pathogen is classified as absent when it is present. Misclassification can bias estimates of disease or pathogen prevalence or measures of association between variables
includes oomycetes, fungi, viruses, virus-like organisms, bacteria, and nematodes.Positive predictive valueThe probability that an individual (tree) with a positive test is actually positive; e.g., the proportion of trees identified as kauri through remote sensing that are actually kauri.	Monitoring	
valueactually positive; e.g., the proportion of trees identified as kauri through remote sensing that are actually kauri.	Pathogen	includes oomycetes, fungi, viruses, virus-like organisms, bacteria,
Precision A description of random error, a measure of statistical variability.	-	actually positive; e.g., the proportion of trees identified as kauri
	Precision	A description of random error, a measure of statistical variability.

Prevalence Prevalence ratio (PR)	The number of individuals in a defined population having a specified outcome at a given point in time. Where the outcome may be presence of a pathogen (pathogen prevalence) or meeting the case definition for diseased (disease prevalence). <i>NOTE: This should not be confused with prevalence as defined in plant pathology, as the count of geographical sampling units where disease is present (e.g., fields, plots, regions, countries) divided by the number assessed.</i> The ratio of the proportion of trees with the outcome (e.g., disease		
	or pathogen detection) to the proportion of trees exposed to the risk factor. Using a 2 x 2 table and disease as an example:		
		Disease +ve	Disease -ve
	Risk factor -Yes (exposed)	a	b b
	Risk factor -No (unexposed)	С	d
	Prevalence ratio: PR = $\frac{a/(a+b)}{c/(c+d)}$		
	Where: a/(a+b) is the prevalence of disease among those exposed to the risk factor c/(c+d) is the prevalence of disease among those that are not exposed to the risk factor Where the prevalence is the same between the exposed and the unexposed PR equals 1.0		
Risk factors	Any factor or variable that is associated with either an increase or decrease in disease prevalence or pathogen prevalence.		
Somoitivity (So)	This is the diagnostic sensitivity of a test.Proportion of trees with the disease that will test positive.True positivesTrue positivesTrue positivesTrue positives		
Sensitivity (Se)			
	disease. Highly sensi because they will hav tests such as the soil	s are trees that test neg tive tests can be used to ve few or no false negati bioassay may fail to de nt. Typically, if a test ha	o rule out disease ves. Less sensitive tect <i>P. agathidicida</i>

	 will have lower specificity (i.e., you will find almost all cases of disease (high Se), but you will also call lots of things diseased that are not (low Sp). NOTE: Diagnostic sensitivity should not be confused with analytical sensitivity which is the lowest level of target agent that can be measured accurately by the test (Cardwell et al., 2018).
Specificity (Sp)	This is the diagnostic specificity of a test.
	Proportion of healthy trees that will test negative
	True negatives True negatives + false positives
	Where false positives are trees that test positive but do not have disease. Highly specific tests will have very few or no false positives e.g., if we detect <i>P. agathidicida</i> in a soil sample using culture and sequencing it is almost certain that <i>P. agathidicida</i> is present. Typically, if a test has high specificity, it will have lower sensitivity (i.e., the cases you find are truly diseased, but you will miss quite a few cases of disease).
	<i>NOTE: Diagnostic specificity should not be confused with analytical specificity, which is similar, but is concerned with performance around excluding non-target species and cross-reactions (false positives) in laboratory testing (Cardwell et al., 2018).</i>
Surveillance	Surveillance is the systematic ongoing collection, collation and analysis of information related to health (plant health in this case) and the timely dissemination of that information to those who need to know so that action can be taken.
Symptoms/ symptomatic	Physiological or structural changes in a plant that indicate the presence of disease by reaction of the host, e.g., canker, leaf spot, wilt, lesion, dieback.